
UniVerse

BASIC SQL Client Interface Guide

Part No. 70-9028-952

NOTICE
Ardent Software, Inc., makes no warranty of any kind with regard to the material
contained in this manual, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose.

The information contained in this manual is subject to change without notice.

This manual contains proprietary information that is protected by copyright. All
rights are reserved. It may not be photocopied, reproduced, or translated, in whole
or in part, without the prior express written consent of Ardent Software, Inc.

Copyright 1995–2000 Ardent Software, Inc. All rights reserved.

Trademarks
UniVerse is a registered trademark of Ardent Software, Inc. Uni Call Interface,
UniVerse Data Replication, UniVerse NLS, UniVerse ODBC, UniObjects, UV/Net,
UV/Term, and Ardent are trademarks of Ardent Software, Inc.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft
Corporation. Open Database Connectivity is a trademark of Microsoft
Corporation.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company, Ltd.

All other company or product names mentioned are trademarks or registered
trademarks of their respective trademark holders.

Printing History
First Printing (70-9028-952) for Release 9.5.2, February 2000

How to Order Technical Documents
To order copies of documents or to obtain a catalog and price list, contact your local
Ardent subsidiary or distributor, or call our main office at (508) 366-3888.

Customer Comments
We welcome your input. Please comment on this manual using the customer
comment form provided in the back of the manual.

This manual is printed on recycled paper.

Table of Contents iii

Preface
Organization of This Guide ... ix
Documentation Conventions ... x
UniVerse Documentation ... xi
Related Documentation ..xiii
Common APIs Documentation ...xiii

Chapter 1. Introduction
Additional BASIC Functions ... 1-3
The CONNECT Command .. 1-3
System Requirements ... 1-3
Administering the RPC on UniVerse Servers ... 1-4
ODBC Dynamic Link Libraries ... 1-4

Chapter 2. Getting Started
Configuring the BASIC SQL Client Interface .. 2-1

Changing the Size of the Server’s Result-Set Buffer 2-2
Location of the Configuration File .. 2-3
Format of the Configuration File ... 2-3
Client Configuration for NLS-Enabled UniVerse Servers 2-4
Creating and Modifying Data Source Definitions ... 2-5
Using UniVerse Admin ... 2-5
Using the UniVerse System Administration Menus 2-7
Maintaining the Configuration File ... 2-8

Using the SQL Client Interface .. 2-13
Running the Demonstration Program ... 2-14

Create a Schema ... 2-14
Run the Program .. 2-15

UniVerse BASIC SQL Client Interface Guide
Table of Contents

iv UniVerse BASIC SQL Client Interface Guide

Chapter 3. Using the CONNECT Command
Command Syntax ..3-2

Command Options ...3-2
Logging In to the Data Source ...3-5

Logging In to a Local UniVerse Server ..3-6
Logging In to a Remote UniVerse Server ..3-7
Logging In to an ODBC Data Source ...3-7
Errors When Logging In to a Data Source ..3-7

Executing SQL Statements on the Data Source ...3-8
Using Block Mode ..3-9

Using Local Commands ...3-9
Displaying and Storing Output ... 3-11
Examples ...3-12

Using Verbose Mode ..3-13
Changing the Display Width of Columns ..3-14
Exiting CONNECT ...3-15
Using UniVerse Output Mode ..3-15
Using Block Mode ..3-17

Chapter 4. Using the SQL Client Interface
Establishing a Connection to a Data Source ..4-1

Connecting to NLS-Enabled Data Sources ...4-2
Allocating the Environment ...4-3
Allocating the Connection Environment ..4-3
Connecting to a Data Source ...4-3

Processing SQL Statements ..4-5
Allocating the SQL Statement Environment ..4-5
Executing SQL Statements ..4-5
Processing Output from SQL Statements ...4-8
Freeing the SQL Statement Environment ...4-9

Terminating the Connection ..4-10
Transaction Management ...4-13

Distributed Transactions ...4-13
Nested Transactions ...4-14

Table of Contents v

Detecting Errors .. 4-15
UniVerse Error and System Messages .. 4-15

Displaying Environment Variables in RAID ... 4-17

Chapter 5. Calling and Executing Procedures
What Can You Call as a UniVerse Procedure? .. 5-1
Processing UniVerse Procedure Results .. 5-2

Print Result Set ... 5-3
Multicolumn Result Set ... 5-3
Affected-Row Count .. 5-4
Output Parameter Values ... 5-4

Processing Errors from UniVerse Procedures ... 5-4
Calling and Executing ODBC Procedures ... 5-4

Chapter 6. How to Write a UniVerse Procedure
Using UniVerse Paragraphs, Commands, and Procs as Procedures 6-2
Writing UniVerse BASIC Procedures ... 6-3

Parameters Used by a UniVerse BASIC Procedure ... 6-3
SQL Results Generated by a UniVerse BASIC Procedure 6-4
Using @HSTMT in a UniVerse BASIC Procedure to Generate SQL Results 6-5
Using the @TMP File in a UniVerse BASIC Procedure 6-7
Errors Generated by a UniVerse BASIC Procedure 6-10
Restrictions in UniVerse BASIC Procedures .. 6-12
Fetching Rows and Closing @HSTMT Within a Procedure 6-12
Hints for Debugging a Procedure .. 6-13

Chapter 7. SQL Client Interface Functions
Variable Names ... 7-2
Return Values ... 7-2
Error Codes .. 7-3
ClearDiagnostics .. 7-4
GetDiagnostics .. 7-5
SetDiagnostics ... 7-6
SQLAllocConnect ... 7-8
SQLAllocEnv .. 7-9

vi UniVerse BASIC SQL Client Interface Guide

SQLAllocStmt ..7-10
SQLBindCol ... 7-11
SQLBindParameter ...7-13
SQLCancel ...7-16
SQLColAttributes ...7-17
SQLColumns ...7-21
SQLConnect ...7-23
SQLDescribeCol ..7-25
SQLDisconnect ..7-27
SQLError ..7-28
SQLExecDirect ..7-31
SQLExecute ...7-34
SQLFetch ..7-36
SQLFreeConnect ...7-37
SQLFreeEnv ...7-38
SQLFreeStmt ...7-39
SQLGetInfo ..7-41
SQLGetTypeInfo ...7-45
SQLNumParams ...7-48
SQLNumResultCols ...7-49
SQLParamOptions ...7-50
SQLPrepare ..7-53
SQLRowCount ..7-56
SQLSetConnectOption ...7-57
SQLSetParam ..7-62
SQLSpecialColumns ...7-63
SQLStatistics ..7-67
SQLTables ..7-72
SQLTransact ...7-74

Appendix A. Data Conversion
Converting BASIC Data to SQL Data ..A-5

BASIC to SQL Character Types ...A-6
BASIC to SQL Binary Types ...A-7

Table of Contents vii

BASIC to SQL.DECIMAL and SQL.NUMERIC ... A-7
BASIC to SQL Integer Types ... A-8
BASIC to SQL.REAL, SQL.FLOAT, and SQL.DOUBLE A-8
BASIC to SQL.DATE .. A-8
BASIC to SQL.TIME ... A-9
BASIC to SQL.TIMESTAMP .. A-10

Converting SQL Data to BASIC Data .. A-11
Converting SQL Character Types to BASIC Data Types A-12
Converting SQL Binary Types to BASIC Data Types A-13
Converting SQL Numeric Types to BASIC Data Types A-13
Converting SQL Date, Time, and Timestamp Types to BASIC Types A-14

Appendix B. SQL Client Interface Demonstration Program
Main Program ..B-1
Creating Local UniVerse Files ...B-4
Inserting Data into Local UniVerse Tables ..B-5
Creating Tables on the Data Source ..B-5
Inserting Data into the Data Source Table ...B-6
Selecting Data from the Data Source ..B-7
Checking for Errors ...B-8

Appendix C. Error Codes

Appendix D. UniVerse Extended Parameters

Appendix E. The ODBC.H File

Glossary

Index

viii UniVerse BASIC SQL Client Interface Guide

Preface ix

Preface

This guide shows how to use the UniVerse BASIC SQL Client Interface (BCI). It is
for application developers who are familiar with UniVerse BASIC and want to
connect to an SQL server DBMS. The server database can be a local or remote
UniVerse system, or it can be an ODBC database such as INFORMIX-OnLine,
ORACLE, or SYBASE. The SQL Client Interface lets you access, create, delete, and
modify server databases on your local system or on one or more remote systems.

Much of the information in this book originally appeared in uV/SQL Client Option
Guide (part number 76-6016).

Organization of This Guide
This guide contains the following:

Chapter 1 introduces the UniVerse BASIC SQL Client Interface.

Chapter 2 describes how to configure your system to use the SQL Client
Interface.

Chapter 3 describes how to use the CONNECT command.

Chapter 4 tells how to use the SQL Client Interface to communicate with
servers.

Chapter 5 describes how to call and execute procedures stored on a UniVerse
or ODBC data source.

Chapter 6 describes how to write a UniVerse procedure.

Chapter 7 describes the SQL Client Interface functions.

Appendix A describes how the SQL Client Interface converts data between the
client system and various server DBMSs.

Appendix B contains a demonstration program that uses the SQL Client
Interface.

Appendix C describes error codes and messages issued by the SQL Client
Interface.

Appendix D lists data source and DBMS-type extended parameters.

x UniVerse BASIC SQL Client Interface Guide

Appendix E lists the contents of the ODBC.H file, which defines the values of
column attributes.

The Glossary defines terms used in this guide.

Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, and
options. In text, bold indicates keys to press, function names,
menu selections, and MS-DOS commands.

UPPERCASE In syntax, uppercase indicates UniVerse commands,
keywords, and options; BASIC statements and functions;
and SQL statements and keywords. In text, uppercase also
indicates UniVerse identifiers such as filenames, account
names, schema names, and Windows NT filenames and
pathnames.

Italic In syntax, italic indicates information that you supply. In
text, italic also indicates UNIX commands and options, file-
names, and pathnames.

Courier Courier indicates examples of source code and system
output.

Courier Bold In examples, courier bold indicates characters that the user
types or keys the user presses (for example, <Return>).

[] Brackets enclose optional items. Do not type the brackets
unless indicated.

{ } Braces enclose nonoptional items from which you must
select at least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

➤ A right arrow between menu options indicates you should
choose each option in sequence. For example, “Choose
File ➤ Exit” means you should choose File from the menu
bar, then choose Exit from the File pull-down menu.

Preface xi

The following conventions are also used:

• Syntax definitions and examples are indented for ease in reading.

• All punctuation marks included in the syntax—for example, commas,
parentheses, or quotation marks—are required unless otherwise indicated.

• Syntax lines that do not fit on one line in this manual are continued on
subsequent lines. The continuation lines are indented. When entering
syntax, type the entire syntax entry, including the continuation lines, on the
same input line.

UniVerse Documentation
UniVerse documentation includes the following:

UniVerse BASIC: Contains comprehensive information about the UniVerse
BASIC language. It includes reference pages for all BASIC statements and
functions. It is for experienced programmers.

UniVerse BASIC SQL Client Interface Guide: Describes how to use the BASIC
SQL Client Interface (BCI), an interface to UniVerse and non-UniVerse data-
bases from UniVerse BASIC. The BASIC SQL Client Interface uses ODBC-like
function calls to execute SQL statements on local or remote database servers
such as UniVerse, ORACLE, SYBASE, or INFORMIX. This book is for experi-
enced SQL programmers.

Administering UniVerse: Describes tasks performed by UniVerse administra-
tors, such as starting up and shutting down the system, system configuration
and maintenance, system security, maintaining and transferring UniVerse
accounts, maintaining peripherals, backing up and restoring files, and
managing file and record locks, and network services. This book includes
descriptions of how to use the UniVerse Admin program on a Windows client
and how to use shell commands on UNIX systems to administer UniVerse.

UniVerse Transaction Logging and Recovery: Describes the UniVerse transac-
tion logging subsystem, including both transaction and warmstart logging
and recovery. This book is for system administrators.

UniVerse System Description: Provides detailed and advanced information
about UniVerse features and capabilities for experienced users. This book
describes how to use UniVerse commands, work in a UniVerse environment,
create a UniVerse database, and maintain UniVerse files.

xii UniVerse BASIC SQL Client Interface Guide

UniVerse User Reference: Contains reference pages for all UniVerse
commands, keywords, and user records, allowing experienced users to refer to
syntax details quickly.

Guide to RetrieVe: Describes RetrieVe, the UniVerse query language that lets
users select, sort, process, and display data in UniVerse files. This book is for
users who are familiar with UniVerse.

Guide to ProVerb: Describes ProVerb, a UniVerse processor used by applica-
tion developers to execute prestored procedures called procs. This book
describes tasks such as relational data testing, arithmetic processing, and
transfers to subroutines. It also includes reference pages for all ProVerb
commands.

Guide to the UniVerse Editor: Describes in detail how to use the Editor,
allowing users to modify UniVerse files or programs. This book also includes
reference pages for all UniVerse Editor commands.

UniVerse NLS Guide: Describes how to use and manage UniVerse’s National
Language Support (NLS). This book is for users, programmers, and
administrators.

UniVerse SQL Administration for DBAs: Describes administrative tasks typi-
cally performed by DBAs, such as maintaining database integrity and security,
and creating and modifying databases. This book is for database administra-
tors (DBAs) who are familiar with UniVerse.

UniVerse SQL User Guide: Describes how to use SQL functionality in UniVerse
applications. This book is for application developers who are familiar with
UniVerse.

UniVerse SQL Reference: Contains reference pages for all SQL statements and
keywords, allowing experienced SQL users to refer to syntax details quickly. It
includes the complete UniVerse SQL grammar in Backus Naur Form (BNF).

UniVerse Master Index: A comprehensive index for UniVerse documentation.

UniVerse Quick Reference: A quick reference to all UniVerse commands and
keywords. It also summarizes UniVerse SQL statements and keywords, all
elements of the UniVerse BASIC language, Editor commands, ProVerb
commands, file types, file dictionaries, and user exits.

Preface xiii

Related Documentation
The following documentation is also available:

UniVerse GCI Guide: Describes how to use the General Calling Interface (GCI)
to call subroutines written in C, C++, or FORTRAN from BASIC programs.
This book is for experienced programmers who are familiar with UniVerse.

UniVerse ODBC Guide: Describes how to install and configure a UniVerse
ODBC server on a UniVerse host system. It also describes how to use UniVerse
ODBC Config and how to install, configure, and use UniVerse ODBC drivers
on client systems. This book is for experienced UniVerse developers who are
familiar with SQL and ODBC.

UV/Term Guide: Provides step-by-step instructions for how to install the
UV/Term software on a PC, how to define terminal parameters, and how to
start up and use UV/Term. This book also describes the terminal emulator
window and how to configure the graphical user interface.

UV/Net II Guide: Describes UV/Net II, the UniVerse transparent database
networking facility that lets users access UniVerse files on remote systems.
This book is for experienced UniVerse administrators.

UniVerse Guide for Pick Users: Describes UniVerse for new UniVerse users
familiar with Pick-based systems.

Moving to UniVerse from PI/open: Describes how to prepare the PI/open envi-
ronment before converting PI/open applications to run under UniVerse. This
book includes step-by-step procedures for converting INFO/BASIC
programs, accounts, and files. This book is for experienced PI/open users and
does not assume detailed knowledge of UniVerse.

Common APIs Documentation
The following books document application programming interfaces (APIs) used
for developing client applications that connect to UniVerse and UniData servers.

Administrative Supplement for Common APIs: Introduces Ardent Software’s
five common APIs, and provides important information that developers using
any of the common APIs will need. It includes information about the UniRPC,
the UCI Config Editor, the ud_database file, and device licensing.

UCI Developer’s Guide: Describes how to use UCI (Uni Call Interface), an
interface to UniVerse databases from C-based client programs. UCI uses

xiv UniVerse BASIC SQL Client Interface Guide

ODBC-like function calls to execute SQL statements on local or remote
UniVerse servers. This book is for experienced SQL programmers.

InterCall Developer’s Guide: Describes how to use the InterCall API to access
data on UniVerse and UniData systems from external programs. This book is
for experienced programmers who are familiar with UniVerse or UniData.

UniObjects Developer’s Guide: Describes UniObjects, an interface to UniVerse
and UniData systems from Visual Basic. This book is for experienced program-
mers and application developers who are familiar with UniVerse or UniData,
and with Visual Basic, and who want to write Visual Basic programs that
access these databases.

UniObjects for Java Developer’s Guide: Describes UniObjects for Java, an
interface to UniVerse and UniData systems from Java. This book is for experi-
enced programmers and application developers who are familiar with
UniVerse or UniData, and with Java, and who want to write Java programs
that access these databases.

Using UniOLEDB: Describes how to use UniOLEDB, an interface to UniVerse
and UniData systems for OLE DB consumers. This book is for experienced
programmers and application developers who are familiar with UniVerse or
UniData, and with OLE DB, and who want to write OLE DB programs that
access these databases.

Introduction 1-1

1
Introduction

The UniVerse BASIC SQL Client Interface is an application programming inter-
face (API) that makes UniVerse a client in a client/server environment. The server
data source can be either:

• A local or remote UniVerse database
• A relational DBMS such as ORACLE, SYBASE, or INFORMIX-OnLine

You use the SQL Client Interface to connect to one or more data sources.

UniVerse Data Sources. The SQL Client Interface connects directly to local
UniVerse servers. Remote UniVerse servers use the remote procedure call services
(RPC) to communicate with the SQL Client Interface. To connect to a UniVerse
data source, the RPC daemon (service) must be running on the UniVerse server.

As of Release 9.4.1, UniVerse servers can run with NLS (National Language
Support) enabled. NLS provides extensive support for many single-byte and
multibyte character sets and country-specific locale settings. NLS lets client appli-
cation programs store and retrieve data in a UniVerse data source using the
character sets and locale settings most appropriate for the client application and
operating system. NLS is fully documented in UniVerse NLS Guide.

ODBC Data Sources. To connect to an ODBC data source, an ODBC driver
manager and suitable ODBC drivers for the data sources you want to connect to
must be installed on the client system.

Once connected to any data source, the SQL Client Interface lets you read data
from and write data to the data source. Your application program can access the
capabilities of the server DBMS as shown in Figure 1-1.

1-2 UniVerse BASIC SQL Client Interface Guide

The SQL Client Interface also includes the CONNECT command, which lets users
access data sources interactively.

The SQL Client Interface is based on the core-level definition of the Microsoft
Open Database Connectivity (ODBC) interface. The ODBC interface lets you
write programs that can operate across a wide range of data sources. With the
SQL Client Interface, application developers have access to the full range of capa-
bilities offered by the server DBMS. For complete information about the ODBC
interface, see Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide.

local
UniVerse
account
(localuv)

Figure 1-1. UniVerse SQL Client / Server Relationships

Server systems

Server O/S (UNIX or NT)

UniVerse
DBMS

ORACLE
DBMS

INFORMIX
DBMS

ODBC
driver for
ORACLE

ODBC
driver for
INFORMIX

Client system

UniVerse

Client O/S (UNIX or NT)

BASIC
application
program

Server O/S

Server O/S

RPC
services

SQL Client
Interface

SYBASE
DBMS

ODBC
driver for
SYBASE

Server O/S

ODBC driver
manager

Introduction 1-3

Additional BASIC Functions
UniVerse BASIC includes a set of functions that make up the SQL Client Interface.
A client application program uses these functions to do the following:

• Allocate resources for connections
• Connect to one or more local or remote data sources
• Send SQL statements to the data source for execution
• Call procedures stored on the data source for execution
• Receive results row by row from SELECT statements
• Insert, update, and delete rows using SQL data manipulation statements
• Create and drop tables and views using SQL data definition statements
• Receive status and error information from the data source
• Disconnect from the data source

The I/O operations in the SQL Client Interface differ from normal BASIC I/O.
The SQL Client Interface does not use the BASIC file operations OPEN, READ,
WRITE, and CLOSE.

The CONNECT Command
The SQL Client Interface provides a utility, invoked with the CONNECT
command, that lets you connect to a server DBMS and interactively manipulate
and display data from that system on the client system.

System Requirements
To use the SQL Client Interface to access the local UniVerse database, you need
Release 8.3.3 or later of UniVerse.

To use the SQL Client Interface to access a remote UniVerse database, you need
the following:

• TCP/IP hardware and software installed on both client and server systems
• Release 8.3.3 or later of UniVerse on the client system
• Release 8.3.3 or later of UniVerse on the server system
• The UniRPC daemon (unirpcd) running on a UNIX server
• The UniRPC service (unirpc) running on a Windows NT server

To use the SQL Client Interface to access an ODBC database, you need the
following:

• TCP/IP hardware and software installed on both client and server systems

• At least one DBMS installed on a server system

1-4 UniVerse BASIC SQL Client Interface Guide

• ODBC driver manager and ODBC driver for the data source, installed on
the client system

• Release 9.3.1 or later of UniVerse installed on the client system

Administering the RPC on UniVerse Servers
On UniVerse servers, the RPC handles requests from client systems. On UNIX
systems the RPC daemon unirpcd receives SQLConnect requests and starts up the
appropriate server processes to support each application using the SQL Client
Interface. Each application has two supporting processes, uvserver and uvsrvhelpd,
on the server while it is connected. The server daemon (uvsrvd) is the process to
which a client connects.

On Windows NT systems, the RPC service unirpc receives connection requests
and starts the server processes. A helper thread runs as part of the uvserver
process on Windows NT.

Before any client can connect to the UniVerse server, the system administrator of
the server must ensure that the RPC daemon or service is running and that the
unirpcservices file, which defines the RPC services available on the server, contains
an entry (uvserver) for the uvsrvd daemon. Once the RPC daemon or service is
started, it automatically restarts whenever you reboot UniVerse.

Note: The RPC must be configured and running even if the client and server
systems are on the same machine, unless you make a direct connection to
the local UniVerse server using the host name localhost or the loopback IP
address 127.0.0.1 .

See Administering UniVerse for information on how to do the following:

• Add and remove nodes from the network
• Change the number of the RPC port
• Start and stop the RPC daemon or service

Administering UniVerse also describes the structure and function of the unirpc-
services file in the UV account directory. The unirpcservices file contains an entry
for uvserver, which is required to run applications using the SQL Client Interface.

ODBC Dynamic Link Libraries
On UNIX systems the ODBC dynamic link library (DLL) is installed in the uvdlls
directory in the UV account directory ($uvhome/uvdlls). This library has the name

Introduction 1-5

libodbc.xx, where xx is supplied by the system you are running on. The installation
program creates a symbolic link from /.uvlibs to the uvdlls directory. Both the uvsh
and uvsrvd modules look for their shared libraries in this directory, so it is neces-
sary that this symbolic link not be broken.

If for any reason the symbolic link is broken, or if the system administrator moves
the shared libraries to another directory, the relink.uvlibs shell script must be used
to relink them. The relink.uvlibs script lives in $uvhome/bin. To relink the shared
libraries, use the following syntax:

relink.uvlibs pathname

pathname is the full pathname of the directory containing the shared libraries. For
example:

% relink.uvlibs $uvhome/uvdlls

Before using the SQL Client Interface to connect to an ODBC data source, the
administrator must reestablish the link to uvdlls in order to use the ODBC driver
manager. To do this, do the following:

1. Install the ODBC driver manager according to the vendor’s instructions.

2. Determine where the ODBC DDL libodbc.xx resides. For example, the library
for the Intersolv driver lives in $odbchome/dlls, and the library for the Visi-
genics driver lives in $odbchome/libs.

3. Shut down UniVerse.

4. Execute the relink.uvlibs script to relink to the ODBC DDL. For example, to
relink to the Intersolv driver library, enter the following:

% relink.uv.libs $odbchome/dlls

5. Restart UniVerse.

The library directory containing the ODBC driver’s DDL is stored in an environ-
ment variable, which may not be the same name on all systems. For example, the
environment variable is called LD_LIBRARY_PATH on Solaris systems,
SHLIB_PATH on HP systems, and so on. If this environment variable is not prop-
erly set, running SQL Client Interface programs may produce errors such as the
following:

ld.so.1: uvsh: fatal: lib xxxx : can't open file: errno=2

xxxx may be some unrecognizable combination of letters and numbers. To correct
this, set up your environment according to the vendor’s instructions.

1-6 UniVerse BASIC SQL Client Interface Guide

Getting Started 2-1

2
Getting Started

This chapter describes how to do the following:

• Define data sources in the configuration file
• Maintain the configuration file
• Run the SQL Client Interface demonstration program

Configuring the BASIC SQL Client Interface
The SQL Client Interface needs information about data sources to which it can
connect. A data source is a combination of hardware and software to which a
client application connects and with which it exchanges data.

The SQL Client Interface defines a data source by means of a data source specifica-
tion. A data source specification contains all information needed to let an
application connect to and interact with a data source. Data source specifications
are stored in the configuration file uvodbc.config.

When you install UniVerse, the configuration file contains one specification
(localuv) for the local UniVerse server. The uvodbc.config file should contain at least
one data source specification for each UniVerse data source you want to connect
to.

ODBC data sources need not be specified in uvodbc.config. However, if you want
to use the CONNECT command to connect to an ODBC data source, you must
specify the data source in uvodbc.config.

You can specify several different data source specifications (with different names)
for the same data source. Each specification must include the following:

• Data source name, which the SQL Client Interface uses to reference the data
source. You use this name with the CONNECT command or the BASIC
SQLConnect call to specify the data source you are connecting to.

2-2 UniVerse BASIC SQL Client Interface Guide

• DBMS type, which defines the type of data source (UNIVERSE or ODBC).
The DBMS type determines what internal parameters the SQL Client Inter-
face needs in order to exchange data with the data source.

UniVerse data source specifications also require the following three elements,
which are not required for ODBC data sources:

• Network connection type. On UNIX systems the only supported network
type is TCP/IP. On Windows NT systems, the network type can be TCP/IP
or LAN.

• Service name as defined on the server. For local and remote UniVerse
services, the service name is uvserver.

• Network host name or IP address of the machine running the UniVerse
data source you want to connect to. For a direct connection to the local
UniVerse server, the host name is either localhost or the loopback IP address
127.0.0.1 .

In addition to the required items, a data source specification can include extended
parameters that control data precision, transaction management, NLS locale
information, and so on. Extended parameters tailor the operation of a particular
data source or of all data sources.

Note: The ODBC data source name in the uvodbc.config file must match the data
source name specified in the initialization file (e.g., odbc.ini) or registry of
the ODBC data source.

Changing the Size of the Server’s Result-Set Buffer
Two parameters you might want to change are MAXFETCHBUFF and
MAXFETCHCOLS. Use these parameters to increase the amount of data in each
buffer sent from the server to the client. This improves performance by reducing
the number of data transfers between server and client.

MAXFETCHBUFF specifies the size of the buffer the server uses to hold data rows
before sending them to the client. MAXFETCHCOLS specifies the number of
column values the server can put in the buffer before sending them to the client.
For example, if MAXFETCHCOLS is set to 100 column values and you do a
SELECT of 40 columns, no more than two rows can be sent in any buffer, because
the total number of column values in two rows is 80. Three rows would contain
120 column values, which exceeds the value of MAXFETCHCOLS.

Getting Started 2-3

Location of the Configuration File
The configuration file is called uvodbc.config. It is normally in the UV account
directory but can also be in your current working directory. On UNIX systems the
configuration file can also be in /etc; on Windows NT systems it can be in one of
the directories specified in the PATH environment variable. The SQL Client Inter-
face searches for the configuration file in the following order:

1. Current working directory

2. UV account directory

3. On UNIX systems: the /etc directory

On Windows NT systems: each directory specified in the PATH environment
variable

Format of the Configuration File
The following example illustrates the format of the configuration file:

<localuv>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = localhost

<uv8dg>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = dg8500

<ora>
DBMSTYPE = ODBC

<syb>
DBMSTYPE = ODBC

Note: The spaces surrounding the equal signs are required.

Appendix D lists the extended parameters and their default values. It also tells
which parameters you can modify.

2-4 UniVerse BASIC SQL Client Interface Guide

Client Configuration for NLS-Enabled UniVerse Servers
NLS (National Language Support) is fully documented in UniVerse NLS Guide.

If you need to specify particular server locale information, change the
uvodbc.config file to contain this information either for each data source or for all
UniVerse server connections. NLS users should note that the uvodbc.config file
entries are in ASCII format. When you specify NLS and locale parameters in the
uvodbc.config file, you do not need to make changes to your programs to let client
programs work with an NLS-enabled server.

Use the following parameters to specify a locale’s components:

NLSLCTIME
NLSLCNUMERIC
NLSLCMONETARY
NLSLCCTYPE
NLSLCCOLLATE

Use the NLSLOCALE parameter to specify all of a locale’s components. Use the
NLSLCALL parameter to specify a slash-separated list of locales. These locales
specify the five locale categories in the order listed above.

The syntax for NLSLCALL is:

NLSLCALL = value1/value2/value3/value4/value5

For example, you could specify:

NLSLOCALE = DE-GERMAN

Or you could specify:

NLSLCALL = NL-DUTCH/NL-DUTCH/DEFAULT/NL-DUTCH/NL-DUTCH

This sets all components of the locale for this connection to those indicated by the
entry in the NLS.LC.ALL table with ID = NL-DUTCH, except for the LCMONE-
TARY entry, which is loaded from the NLS.LC.MONETARY table for the
DEFAULT entry.

If more than one entry is found in the NLSLCALL entry, all entries must be
nonempty and must represent valid entries in the appropriate NLS.LC.category
table.

You can also change only a single component of the locale:

NLSLCCOLLATE = NO-NORWEGIAN

This forces the server’s sort order to be Norwegian.

Getting Started 2-5

NLSLCCOLLATE is one of the most important locale parameter because it affects
the order in which rows are returned to the application.

Creating and Modifying Data Source Definitions
Use UniVerse Admin or an editor such as Sysedit, vi, or emacs, to edit the configu-
ration file. Using UniVerse Admin you can create, modify, and delete UniVerse
and ODBC data sources.

On Windows NT systems, to add or change extended parameters for a data
source or for all data sources of a particular type, you must edit the file manually.

On UNIX systems you can use the UniVerse System Administration menus to edit
the configuration file. You must be a UniVerse Administrator to use the System
Administration menus.

Using UniVerse Admin

Creating the Configuration File
Data source administration lets you view and change the current set of defined
BASIC SQL Client Interface (BCI) data sources.

To administer UniVerse data sources, choose Data Sources from the UniVerse
Admin Control Panel. The Data Source Admin window appears:

This window lists data sources defined in the uvodbc.config file.

2-6 UniVerse BASIC SQL Client Interface Guide

You can perform the following data source administration operations:

Creating a New Data Source
To create a new data source:

1. Click New… . The Data Source Details dialog box appears:

If you want to… Do this… To…

Create a new data source Click New… Display the Data Source
Details dialog box.

Delete an existing data
source

Select the data
source, then click
Delete…

Prompt you for confirma-
tion, and delete the data
source if you click Yes.

View information about a
data source

Select the data
source, then click
Detail…

Display the Data Source
Details dialog box.

Dismiss the Data Source
Admin window

Close Return to the UniVerse
Admin Control Panel.

Get information about data
source administration

Help Display the online help.

Getting Started 2-7

2. Enter the following data source information:

3. Click OK to add the new data source or click Cancel to return to the Data
Source Admin window without making any changes.

Deleting a Data Source
To delete an existing data source:

1. Choose the data source you want to delete.

2. Click Delete… . The system prompts you to confirm the deletion.

3. Click Yes to delete the data source, or click Cancel to return to the Data
Source Admin window without making any changes.

Viewing or Modifying a Data Source
To view or modify an existing data source:

1. Choose the data source you want to view or change.

2. Click Detail… . The Data Source Details dialog box appears.

3. View or change the data source information.

4. Click OK to implement any changes to the data source, or click Cancel to
return to the Data Source Admin window without making any changes.

Using the UniVerse System Administration Menus

Note: The UniVerse System Administration menus are available only on UNIX
systems.

In this field… Enter…

Data Source The name you want to assign to the new data source.

Network Type Click TCP/IP or LAN to specify the communication
transport to use to communicate with the data source.
You can use LAN pipes only with Windows NT servers.

DBMS Type Name of the database management system on the server.
Currently, the only choices are UNIVERSE and ODBC.

Service name UniVerse server name. Currently you cannot change this
field.

Hostname Name or IP address of the server on which the data
source resides.

2-8 UniVerse BASIC SQL Client Interface Guide

To display the Sql client administration menu, choose Package from the System
Administration main menu, then choose Sql client administration. The submenu
shown in Figure 2-1 appears.

The first time you choose an option from the Sql client administration menu,
UniVerse prompts you to enter the full pathname of the configuration file. The
default is uvodbc.config in the current directory.

Maintaining the Configuration File
The Sql client administration menu has three options:

data Source specifications
Defines new data sources and change information about existing data
sources.

data source eXtended parameters
Defines additional parameters for a particular UniVerse data source.

Dbms type extended parameters
Defines additional parameters for all data sources of a particular type
(UNIVERSE or ODBC).

When you choose an option, a data entry screen appears. The menu bar at the top
of the screen provides three pull-down menus. Press F10 or Ctrl-T to move the
cursor to the menu bar.

The File and Help menus have the same options on all Sql client administration
screens. The File menu has three options:

Save Saves the currently displayed values to the configuration file.

Refresh Discards the currently displayed values and retrieves the most
recently saved data.

Figure 2-1. SQL Client Administration Menu

Getting Started 2-9

Exit Returns to the previous pull-down menu. If the data source name field
is not empty, the system asks whether you want to save your changes
to the configuration file.

The Help menu provides help about the Application, the Keys, and the current
Version number. Action menu options are explained in the following sections.

Defining and Changing Data Source Specifications
When you choose the data Source specifications option, the screen shown in
Figure 2-2 appears.

At the “Data Source Name” prompt, enter the name of a data source. When you
enter the name of a new data source, you can define the data source by entering
values in each field. When you enter the name of an existing data source, the
details of that source are displayed and you can change the values in any field.
Press F4 or enter * (asterisk) to list all currently defined data sources. You can
then enter the name of a data source by choosing it.

In the “DBMS Type” field, press F4 or enter * (asterisk) to list the valid DBMS
types. The SQL Client Interface supports these DBMS types:

• UNIVERSE
• ODBC

Figure 2-2. Maintain Data Source Specifications Screen

2-10 UniVerse BASIC SQL Client Interface Guide

The “Network Type” field is relevant only for UniVerse data sources. It can be
TCP/IP or LAN. Use LAN only for two or more Windows NT systems connected
to each other.

The “Service Name” field is relevant only for UniVerse data sources. The service
name of the UniVerse server is uvserver.

The “Host Name/Address” field is relevant only for UniVerse data sources. If you
specify a network host name for a UniVerse data source, the host name must be in
the hosts file (or equivalent file if you use another network administration mecha-
nism such as Yellow Pages) on the client system. You can specify the host name or
an IP address for the local UniVerse server as well as for remote data sources. For
direct connections to the current account on the local UniVerse server, use the host
name localhost or the TCP/IP loopback address 127.0.0.1 .

If you specify an IP address, use the following format:

198.232.158.155

When you press Return at the end of the “Host Name/Address” field, the system
asks if you want to change data in any field.

If you choose Yes, use the cursor keys to move to the fields you want to change,
enter the new values, then move to the “Host Name/Address” field and press
Return.

When you choose No, the system asks if you want to save your data. Choose Yes
to save your data in the configuration file.

The Action menu has three options:

Delete Deletes the displayed data source specification.

Rename Prompts you to enter a data source name and changes the current data
source name to the name you enter.

Copy Prompts you to enter a data source name and copies the currently
displayed data to the new data source specification. Extended data
source parameters are not copied.

Getting Started 2-11

Adding or Changing a Data Source’s Extended Parameters
When you choose the data source eXtended parameters option, the screen shown
in Figure 2-3 appears.

At the “Data Source” prompt, enter the name of a data source. Press F4 or enter
* (asterisk) to list data sources currently defined in the configuration file.

At the “Parameter” prompt, enter ? (question mark) to list possible parameters.
Press F4 or enter * (asterisk) to list all extended parameters currently defined for
this data source. You can add, change, or delete an entry using options on the
Action menu.

Parameters affecting data type precision or error mapping are the only ones likely
to be of interest.

The “Mode” field indicates the current mode of operation of the menu. To change
mode, use the Action menu on the menu bar. The Action menu has four options.
After you enter a data source name and a parameter, you can choose one of the
following actions:

Add This is the default action. If the extended parameter is one value (e.g.,
MAXFETCHCOLS = 400), the new value overwrites the old value. If
the extended parameter has two values (e.g., MAPERROR = S0001 =
955), it is parsed to see if it should overwrite or be added to the
extended parameters of this data source.

Figure 2-3. Maintain Data Sources Extended Parameters Screen

2-12 UniVerse BASIC SQL Client Interface Guide

List Lists all the extended parameters currently defined for this data
source. This output is the same as that produced by pressing F4 in the
“Parameter” field except that you cannot choose an entry.

Delete If the “Parameter” field is empty, the extended parameters of the data
source are listed, and you can choose an entry to delete. You cannot
delete generic parameters that were not set by a user.

Modify If the “Parameter” field is empty, the extended parameters of the data
source are listed, and you can select choose an entry to change. If the
“Parameter” field is blanked now, and the Mode is left as Modify, an
error message appears stating that the field cannot be blank. If you
change a parameter name, the original entry is unchanged. You can
use Delete to remove the original entry. If the extended parameter has
two values (for instance, MAPERROR = S0001 = 955), it is parsed to
see if it should overwrite or be added to the extended parameters of
this data source.

Adding or Changing Parameters for All Data Sources
When you choose the Dbms type extended parameters option, the screen shown
in Figure 2-4 appears.

At the “DBMS Name” prompt, enter UNIVERSE or ODBC.

Figure 2-4. Maintain DBMS-Type Extended Parameters Screen

Getting Started 2-13

At the “Parameter” prompt, enter ? (question mark) to list possible parameters.
Press F4 or enter * (asterisk) to see a list of all extended parameters currently
defined for UniVerse. The chosen entries can then be added, modified, or deleted
by using the options of the Action menu.

The “Mode” field indicates the current mode of operation of the menu. To change
mode, use the Action menu on the menu bar. The Action menu has four options.
After you enter a DBMS name and a parameter, you can choose one of the
following actions:

Add This is the default action. If the extended parameter is one value (e.g.,
MAXFETCHCOLS = 400), the new value overwrites the old value. If
the extended parameter has two values (for instance, MAPERROR =
S0001 = 955), it is parsed to see if it should overwrite or be added
to the extended parameters of this DBMS type.

List Lists all the extended parameters currently defined for this DBMS
type. This output is the same as that produced by pressing F4 in the
“Parameter” field except that you cannot choose an entry.

Delete If the “Parameter” field is empty, the extended parameters of the
DBMS type are listed, and you can choose an entry to delete. You
cannot delete generic parameters that were not set by a user.

Modify If the “Parameter” field is empty, the extended parameters of the
DBMS type are listed, and you can choose an entry to change. If the
“Parameter” field is blanked now, and the Mode is left as Modify, an
error message appears stating that the field cannot be blank. If you
change the parameter name, the original entry is unchanged. You can
use Delete to remove the original entry. If the extended parameter has
two values (for instance, MAPERROR = S0001 = 955), it is parsed to
see if it should overwrite or be added to the extended parameters of
this DBMS type.

Using the SQL Client Interface
After you configure the SQL Client Interface, you can do any of the following:

• Run the SQL Client Interface demonstration program SQLBCIDEMO
• Use the CONNECT command to connect to a data source
• Use UniVerse BASIC to write an SQL Client Interface application program

See Chapter 3 for details about the CONNECT command. See Chapters 4 and 7
for details about the SQL Client Interface. The next section describes how to run
the demonstration program.

2-14 UniVerse BASIC SQL Client Interface Guide

Running the Demonstration Program
When you install UniVerse, the SQLBCIDEMO demonstration program is copied
into the BP file of the UV account. Appendix B contains the source code for
SQLBCIDEMO and explains what it does.

Create a Schema
You must run the demonstration program as an SQL user with appropriate privi-
leges, and you must be in a UniVerse schema. To create a new schema on either a
UNIX or a Windows NT system, do the following:

1. Make a new directory:

% mkdir newdir

C:\ path > mkdir newdir

newdir is the name of the new directory.

2. Have the DBA do the following:

a. Invoke UniVerse in the SQL catalog directory:

% cd / uvpath /sql/catalog
% / uvpath /bin/uv

C:\ path > cd \uvpath\sql\catalog
C:\ path > uvsh

uvpath is the directory where UniVerse is installed.

b. Register you as an SQL user, if necessary:

>GRANT CONNECT TOuser ;

user is your login name.

c. Create a schema in your new directory:

>CREATE SCHEMAname
SQL+AUTHORIZATION user
SQL+HOME /newdirpath ;

name is the name of the schema. On Windows NT, name must be fully qual-
ified. newdirpath is the full pathname of your new directory. On
Windows NT, the full pathname includes the drive letter.

Getting Started 2-15

3. Invoke UniVerse in newdir:

% cd / newdirpath
% / uvpath /bin/uv

C:\ path > cd \ newdirpath
C:\ path > uvsh

Run the Program
1. To run the program, enter the following at the UniVerse prompt:

>SQLBCIDEMO

The program prompts you to enter the name of the data source you want to
connect to:

Please enter the target data source ?

2. Enter the name of a data source defined in the configuration file.

If you are connecting to a UniVerse data source, the prompt sequence is as
follows:

Testing for data source connectivity....
Please enter the username for the server operating system

login ? terry
Please enter the operating system password for user terry ?
Enter name or path of remote schema/account (hit return if

local)? D:/users/terry/uv

If you are connecting to an ODBC data source, the prompt sequence is as
follows:

Testing for data source connectivity....
Enter the first DBMS connection parameter: ? smythe
Enter the second DBMS connection parameter: <Return>

After the data source accepts your login parameters, the program displays
output similar to the following:

Connecting to data source: localuv
Deleting local SQLCOSTAFF file
DELETEd file "SQLCOSTAFF", Type 2, Modulo 1.
DELETEd file "D_SQLCOSTAFF", Type 3, Modulo 1.
DELETEd file definition record "SQLCOSTAFF" in the VOC file.

Creating file "SQLCOSTAFF" as Type 2, Modulo 1, Separation 1.
Creating file "D_SQLCOSTAFF" as Type 3, Modulo 1, Separation 2.
Added "@ID", the default record for RetrieVe, to "D_SQLCOSTAFF".

2-16 UniVerse BASIC SQL Client Interface Guide

File "SQLCOSTAFF" has been cleared.
Dropping SQLCOSTAFF table at localuv

Creating SQLCOSTAFF table at localuv

Setting values for the parameter markers

Prepare the SQL statement to load SQLCOSTAFF table
Loading row 1 of SQLCOSTAFF
Loading row 2 of SQLCOSTAFF
Loading row 3 of SQLCOSTAFF
Loading row 4 of SQLCOSTAFF
Loading row 5 of SQLCOSTAFF
Execute a SELECT statement against the SQLCOSTAFF table

Bind columns to program variables
EMPNUM EMPNAME GRADE CITY

E1 Alice 12 Deale
E2 Betty 10 Vienna
E3 Carmen 13 Vienna
E4 Don 12 Deale
E5 Ed 13 Akron
Exiting SQLBCIDEMO

>

Using the CONNECT Command 3-1

3
Using the

CONNECT Command

This chapter describes how to use the CONNECT command to connect to a data
source from a UniVerse client. You enter the CONNECT command at the
UniVerse prompt. The CONNECT command lets you submit SQL statements to
the data source and receive results at your terminal.

While you are connected to a data source, you can type any SQL statement under-
stood by the data source’s DBMS engine, including SELECT, INSERT, UPDATE,
DELETE, GRANT, and CREATE TABLE. You cannot, however, successfully
submit commands understood only by a front-end tool at the server. ODBC data
sources can use SQL language that is consistent with the ODBC grammar specifi-
cation as documented in Appendix C of Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

The CONNECT command runs in autocommit mode: that is, all changes made to
the data source’s DBMS are committed immediately. Do not use transaction
control statements such as BEGIN TRANSACTION, COMMIT, and ROLLBACK
when you are using CONNECT. For information about transactions, see “Transac-
tion Management” on page 4-13.

Some database systems such as SYBASE treat SQL identifiers and keywords case-
sensitively, whereas others such as ORACLE and INFORMIX do not. UniVerse
treats SQL identifiers case-sensitively, but it treats SQL keywords as case-insensi-
tive. For example, in UniVerse and SYBASE a table or column called BUDGET is
different from one called Budget. ORACLE and INFORMIX treat these as dupli-
cates. Also, SYBASE requires you to specify data types (char, int, float, etc.) in
lowercase. In UniVerse, ORACLE, and INFORMIX you can use either upper- or
lowercase letters for these keywords.

3-2 UniVerse BASIC SQL Client Interface Guide

ODBC Data Sources. If you execute a stored procedure or enter a command
batch with multiple SELECT statements, the results of only the first SELECT state-
ment are returned.

Command Syntax
The syntax of the CONNECT command is as follows:

CONNECT data.source [option setting [option setting …]]
data.source is the name of the data source to which you want to connect. The data
source must be defined in the uvodbc.config file. If you do not enter the name of a
data source, CONNECT lists all data sources in the uvodbc.config file.

option is any of the following:

Command Options
You can specify any option by typing the word or its first letter. Each option must
be followed by a setting. The following section describes the options and their
possible settings in detail.

BLOCK Option
The BLOCK option defines how input statements will be terminated. setting is one
of the following:

ON Enables block mode. In this mode you can enter a series of SQL state-
ments, ending each with a ; (semicolon). To terminate the block of SQL
statements, press Return immediately after an SQL+ prompt.

OFF Disables block mode. In this mode if you type a semicolon at the end
of a line of input, the SQL Client Interface terminates your input and
sends it to the data source. This is the default setting.

string Enables block mode (see ON, above). string must be from 1 to 4 char-
acters. To terminate the block of SQL statements, enter string
immediately after an SQL+ prompt.

See “Executing SQL Statements on the Data Source” on page 3-8 for more details.

BLOCK PREFIX
INVERT UVOUT
MVDISPLAY VERBOSE
NULL WIDTH

Using the CONNECT Command 3-3

INVERT Option
The INVERT option lets you control case inversion for alphabetic characters you
type while CONNECT is running. setting is one of the following:

ON Inverts the case of all alphabetic characters you type—that is, lower-
case letters change to uppercase, and uppercase letters change to
lowercase. This is equivalent to setting PTERM CASE parameters to
INVERT and LC-IN.

OFF Disables case inversion. This is equivalent to setting PTERM CASE
parameters to NOINVERT and LC-IN. This is the default setting for
ODBC data sources.

INIT Sets case-inversion parameters to the values they had when you
invoked CONNECT. This is the default setting for UniVerse data
sources.

When you exit CONNECT, case inversion for input is restored to the state it was
in when you invoked CONNECT.

MVDISPLAY Option
The MVDISPLAY option defines how to display value marks in multivalued data
selected from a UniVerse data source. For each row, multiple values in the same
field are displayed on the same line, separated by value marks. setting is one of
the following:

SPACE Displays a value mark as a blank space.

NOCONV Displays a value mark as CHAR(253).

char Displays a value mark as char (one character).

By default, value marks are displayed as * (asterisk).

NULL Option
The NULL option defines how to display the SQL null value. setting is one of the
following:

SPACE Displays SQL null as a blank space.

NOCONV Displays SQL null as CHAR(128).

string Displays SQL null as string. The string can be from 1 to 4 characters.
By default, null is displayed as the four-character string NULL.

3-4 UniVerse BASIC SQL Client Interface Guide

PREFIX Option
The PREFIX option defines the prefix character for local commands. setting is any
valid prefix character. The default prefix character is a period (.). You can use
only the following characters as the prefix character:

For more details see “Using Local Commands” on page 3-9.

UVOUT Option
The UVOUT option specifies how to handle output from SELECT statements
executed on the data source. setting is either:

filename Stores output in filename on the client, then displays the output from
filename. If the file does not exist, the CONNECT command creates it.

OFF Displays output from the data source directly on the client’s screen.
This is the default setting.

See “Displaying and Storing Output” on page 3-11 for more details.

VERBOSE Option
The VERBOSE option displays extended column information and system
messages. setting is either:

ON Enables verbose mode. In this mode the name, SQL data type, preci-
sion, scale, and display size are displayed for each column’s definition
when selecting data from the data source. Error messages are
displayed in extended format that includes the type of call issued,

! exclamation point ? question mark
@ at sign (left parenthesis
hash sign) right parenthesis
$ dollar sign { left brace
% percent } right brace
& ampersand [left bracket
* asterisk] right bracket
/ slash ‘ left quotation mark
\ backslash ‘ right quotation mark
: colon . period
= equal sign | vertical bar
+ plus sign " double quotation mark
− minus sign , comma

Using the CONNECT Command 3-5

status, SQLSTATE, error code generated by the data source, and the
complete error text.

OFF Disables verbose mode. This is the default setting.

WIDTH Option
The WIDTH option defines the width of display columns. setting is one of the
following:

col#,width Sets the width of column col# to width. Do not type a space after the
comma. Specify col# as * (asterisk) to set the width of all columns.
width can be from 4 to the maximum line length allowed by your
terminal. The default width for all columns is 10.

T Truncates data that is wider than the specified width. This is the default
setting.

F Folds data that is wider than the specified width onto multiple lines.

? Displays the current column width settings, and tells whether data
will be truncated or folded.

Logging In to the Data Source
After you enter the CONNECT command and the initial validity checks succeed,
the SQL Client Interface does the following:

• If you are connecting to a UniVerse data source, you are prompted to enter
your login name and password to connect to the server operating system.
Next you are prompted to enter the name of the schema or account you
want to connect to. You can enter a pathname in place of the schema or
account name.

• If you are connecting to an ODBC data source, you are prompted to enter
your user name and password to connect to the data source.

Be sure to enter these parameters in the proper upper- and lowercase letters. The
password is not echoed to the screen.

The user name and password must be valid on the server machine. The default
user name is your login name on the client system. You have three chances to
enter your user name and password correctly.

Note: You can connect to the local UniVerse server via a local connection or via
the RPC facility (remote procedure call). To connect locally, the data source

3-6 UniVerse BASIC SQL Client Interface Guide

specification in the configuration file must specify localhost or the IP loop-
back address 127.0.0.1 . If you are using a local connection to connect to the
local UniVerse server, you are not prompted for your user name and
password.

After you log in successfully to the server operating system, and if the DBMS is
currently running, the SQL Client Interface prompts you to enter the login param-
eters you use to access the DBMS on the server. The following table lists login
parameters for each type of data source:

You have three chances to enter your data source parameters correctly.

Note: If you are using a local connection to connect to the local UniVerse server,
you are not prompted to enter a schema name or account name. You
connect directly to the schema or UniVerse account you are currently
working in.

After accepting the DBMS login parameters, the data source prompt appears:

data.source.name >

The next sections show examples of the login sequence on different systems.
Brackets enclose default entries, which you can accept by pressing Return.

Logging In to a Local UniVerse Server
The following example shows what happens when you use a local connection to
connect to the local UniVerse server:

>CONNECT localuv
localuv>

To connect to the local UniVerse server via the RPC, the data source specification
in the configuration file must specify the host name of the local UniVerse server.

Data Source Login Parameters

UNIVERSE Either a UniVerse account or schema name, or the full
pathname where the account or schema is located.

ORACLE A user name and a password (not echoed to the screen).

SYBASE A user name and a password (not echoed to the screen).

Using the CONNECT Command 3-7

The following example shows what happens when you connect to the local
UniVerse server via the RPC:

>CONNECT uv
Enter your login name for server operating system [george]: fred
Enter password for fred (use SHIFT for lower case):
Enter name or path of remote schema/account [FRED]: <Return>
'FRED' is a non-existent or invalid schema/account on 'uv'
Enter name or path of remote schema/account [FRED]: SALES
uv>

Logging In to a Remote UniVerse Server
The following example shows what happens when you use CONNECT to log in
to a remote UniVerse server:

>CONNECT remuv
Enter your login name for server operating system [fred]: george
Enter password for george (use SHIFT for lower case):
Enter name or path of remote schema/account [GEORGE]: <Return>
'GEORGE' is a non-existent or invalid schema/account on 'remuv'
Enter name or path of remote schema/account [GEORGE]: SALES
remuv>

Logging In to an ODBC Data Source
The following example shows what happens when you use CONNECT to log in
to an ODBC data source:

>CONNECT odbc-ora
Enter username for connecting to 'odbc-ora' DBMS [VEGA\george]: fred
Enter password for fred:
odbc-ora>

Errors When Logging In to a Data Source
The SQL Client Interface does several validity checks when you enter CONNECT
data.source . It runs these checks before prompting you for your user name
and password. The most common errors that can occur at this point are the
following:

• uvserver is not defined in the uvrpcservices file of the UniVerse server. You
will see something like the following:

>CONNECT uv
SQLConnect error: Status = -1 SQLState = 08001 Natcode =
81016
[RPC] error code = 81016

3-8 UniVerse BASIC SQL Client Interface Guide

Connection attempt to 'uv' failed; - RPC daemon probably not
running

• The data source is not defined in the configuration file (for example, you
may have misspelled it). You will see something like the following:

>CONNECT badname
Data source 'badname' not found in uvodbc.config

• The server does not respond. This can be due to problems on the network
or problems with the server software. You will see something like the
following:

>CONNECT fred-vega-sybsrv
Enter username for connecting to 'fred-vega-sybsrv' DBMS

[VEGA\george]: fred
Enter password for fred:
SQLConnect error: Status = -1 SQLState = 01000 Natcode = 4
[ODBC:4][INTERSOLV][ODBC SQL Server driver][SQL
Server]ct_connect():

network packet lay

• The configuration file contains incorrect information for the requested data
source or for its DBMS type. You will see something like the following:

>CONNECT syb
SQLConnect error: Status = -1 SQLState = IM997 Natcode = 0
[SQL Client] An illegal configuration option was found
Invalid parameter(s) found in uvodbc.config file

• If the DBMS is not currently running on the server, you will see something
like the following:

SQLConnect error: Status = -1 SQLState = S1000 Natcode = 9352

[ODBC] [INTERSOLV][ODBC Oracle driver][Oracle]ORA-09352: Windows 32-
bit

Two-Task driver unable to spawn new ORACLE task

The failure of a connection to an ODBC data source generates error messages
particular to that ODBC driver and database server.

Executing SQL Statements on the Data Source
At the data source prompt you can enter any valid SQL statement, or you can
enter a local command beginning with the prefix character. After processing the
statement or command, the data source prompt reappears.

Using the CONNECT Command 3-9

How you terminate your SQL input depends on whether block mode is enabled
or disabled. If block mode is disabled (the default), you must end SQL statements
with a : (semicolon) or a ? (question mark). Statements ending with a semicolon
are executed on the data source. Statements ending with a question mark are not
sent to the data source but are stored on the client. The most recently entered
statement is stored on the client so you can recall it and edit it.

You can enter an SQL statement on several lines. If a statement line does not end
with a semicolon or a question mark and you press Return, the SQL continuation
prompt appears:

SQL+

You can terminate your input by pressing Return immediately after an SQL+
prompt. SQL statements can be up to 38 lines long.

Using Block Mode
Block mode lets you send a series of SQL statements, each terminated with a
semicolon, to the data source as a single block. For instance, you would use block
mode to send PL/SQL blocks or stored procedures to an ODBC data source
running ORACLE.

If block mode is enabled, a semicolon does not terminate your input. SQL state-
ments are sent to the data source for execution only when you press Return or
enter a termination string immediately after an SQL+ prompt. SQL statements
ending with a question mark are not sent to the data source; they are stored on the
client.

Use the BLOCK option of the CONNECT command or the local command
.BLOCK to enable and disable block mode.

You can enable block mode in two ways. With block mode set to ON, you termi-
nate input by pressing Return immediately after an SQL+ prompt.

With block mode set to a character string, you enter the character string immedi-
ately after an SQL+ prompt to terminate input. For example, you might want to
terminate your input with a line such as GO. The string can be up to four charac-
ters long. The string is not case-sensitive, so if you specify GO with the BLOCK
option or the .B command, for example, you can terminate input with GO or go .

Using Local Commands
Commands starting with the designated prefix character are treated as local
commands—that is, the client machine processes them. The default prefix char-

3-10 UniVerse BASIC SQL Client Interface Guide

acter is a . (period). You can change the prefix character by using the PREFIX
option of the CONNECT command.

You can enter local commands as a word or as the first letter of the word. Local
commands cannot end with a semicolon or a question mark. The following are
valid local commands:

.A string Appends string to the most recent SQL statement.

.B[LOCK] setting Enables or disables block mode. setting can be ON, OFF, or
a character string. See “Executing SQL Statements on the
Data Source” on page 3-8 for details.

.C/old/new[/[G]] Changes the first instance of old to new in the most recent
SQL statement. If you use the G (global) option, .C
changes all instances of old to new. You can replace the
slash with any valid delimiter character. Valid delimiters
are the same as valid prefix characters. For a list of valid
delimiters, see the PREFIX option described earlier.

.EXECUTE Executes the most recent SQL statement.

.I[NVERT] setting Enables or disables case inversion for alphabetic charac-
ters you type. setting can be ON, OFF, or INIT. For more
details see the INVERT option described earlier.

.M[VDISPLAY] setting Defines how to display value marks in multivalued data.
setting can be SPACE, NOCONV, or a character.

.N[ULL] setting Defines how to display the SQL null value. setting can be
SPACE, NOCONV, or a character string.

.P[RINT] If the most recent SQL statement is SELECT, executes the
statement and sends output to logical print channel 0. If
the most recent SQL statement is not SELECT, executes
the statement.

.Q[UIT] Exits from CONNECT and returns to the UniVerse
prompt.

.R[ECALL] [name] Displays, but does not execute, the SQL statement stored
as name in the VOC. If you do not specify name, .RECALL
displays the most recent SQL statement.

.S[AVE] name Saves the most recent SQL statement as the sentence name
in the VOC file.

.T[OP] Clears the screen.

Using the CONNECT Command 3-11

.U[VOUT] setting Specifies how to handle output from SELECT statements.
setting can be OFF or the name of a file on the client
system. See “Displaying and Storing Output” on
page 3-11 for details.

.V[ERBOSE] setting Enables or disables verbose mode. setting can be ON or
OFF. For more details see the VERBOSE option described
earlier.

.W[IDTH] setting Defines the width of display columns. For information
about how to set and display column widths, see the
WIDTH option of the CONNECT command.

.X Executes the most recent SQL statement.

Displaying and Storing Output
Use the UVOUT option or the .UVOUT local command to turn UniVerse output
mode on and off. By default UniVerse output mode is off, and CONNECT
displays output from SQL statements on the screen as follows. If a row of output
is wider than the line length defined for your screen, CONNECT displays each
row in UniVerse’s vertical mode, with each column on a separate line. Otherwise,
blank columns two characters wide separate display columns. CONNECT folds
column headings into several lines if they do not fit on one line, and truncates or
folds data that is wider than a column, depending on the WIDTH setting (T or F).
An * (asterisk) appears next to truncated data, a - (hyphen) appears next to folded
data.

In UniVerse output mode, CONNECT writes each row of data to a UniVerse file
on the client (the file is first cleared). It then generates a UniVerse SQL SELECT
statement that displays the data in the file.

In both output modes, data is left-justified if its type is CHAR or DATE, text-justi-
fied if its type is VARCHAR, and right-justified if it is any other data type.

You can use UniVerse output mode to transfer data from the data source to your
UniVerse database. This is because output from a SELECT statement is stored in a
UniVerse file. However, each SELECT clears the UniVerse output file before
writing output to it. If you want to save the results of several SELECTs in your
UniVerse database, you must use several UniVerse output files.

3-12 UniVerse BASIC SQL Client Interface Guide

Examples
The following example shows a normal login to a UniVerse data source:

>CONNECT uv
Enter your login name for server operating system [josh]: <Return>
Enter password for josh (use SHIFT for lower case):
Enter name or path or remote schema/account [JOSH]: SALES
uv> LIST VOC
SQL+
[UNIVERSE:930145] UniVerse/SQL: LIST not a SQL DDL or DML verb.
uv> SELECT * FROM VOC LPTR;
[UNIVERSE:930142] UniVerse/SQL: Most Report Qualifiers are not supported
for Clients, scanned command was FROM VOC SELECT * LPTR;
uv> .C/LPTR/SAMPLE 2
SELECT * FROM VOC SAMPLE 2
uv> .X
NAME TYPE DESC
-------------- ---- -----------------------------------
GLOBAL.CATDIR F File - Used to access system c*
STAT V Verb - Produce the STAT of a n*

2 rows selected
uv> .Q
Disconnecting from 'uv'
>

The LIST command fails because the server accepts only DDL and DML state-
ments from the client. The first SELECT statement fails because LPTR is not valid
in programmatic SQL. The second SELECT statement succeeds, and the user
disconnects from the data source.

The next example shows a normal login to an ODBC data source running
SYBASE. Some data is selected from a table.

>CONNECT syb
Enter username for connecting to 'syb' DBMS [hatch]: <Return>
Enter password for hatch:
syb> select * from tedtab1;
 pk colchar8 colint colreal
---------- -------- ---------- ----------
 1 New York 9876 3.40000009*
 2 Chicago 543 23.3999996*

2 rows selected

Using the CONNECT Command 3-13

Using Verbose Mode
The next example turns on verbose mode and executes the previous SELECT
statement:

syb> .v on
syb> .x
There are 4 columns
Column 1 name is: pk
Column 1 type is: 4 (SQL.INTEGER)
Column 1 prec is: 10
Column 1 scale is: 0
Column 1 dispsize is: 11
Column 2 name is: colchar8
Column 2 type is: 1 (SQL.CHAR)
Column 2 prec is: 8
Column 2 scale is: 0
Column 2 dispsize is: 8
Column 3 name is: colint
Column 3 type is: 4 (SQL.INTEGER)
Column 3 prec is: 10
Column 3 scale is: 0
Column 3 dispsize is: 11
Column 4 name is: colfloat
Column 4 type is: 8 (SQL.DOUBLE)
Column 4 prec is: 15
Column 4 scale is: 0
Column 4 dispsize is: 22
 pk colchar8 colint colfloat
---------- -------- ---------- ----------
 1 New York 9876 3.40000009*
 2 Chicago 543 23.3999996*

2 rows selected
syb> .v off
syb> .w f
syb> .x
 pk colchar8 colint colfloat
---------- -------- ---------- ----------
 1 New York 9876 3.40000009-
 5
 2 Chicago 543 23.3999996-
 19

2 rows selected
syb> .w 4,15

3-14 UniVerse BASIC SQL Client Interface Guide

syb> .x
 pk colchar8 colint colfloat
---------- -------- ---------- ----------
 1 New York 9876 3.400000095
 2 Chicago 543 23.399999619

2 rows selected
syb> .w
Truncate/Fold mode is: F
Column width settings are:
 Column 4: 15
 All other columns: 10

Changing the Display Width of Columns
The following example shows what happens when you change the display width
to fold data that does not fit (as shown in the previous example, in the colreal
column):

syb> .w f
syb> .x
 pk colchar8 colint colreal
---------- -------- ---------- ----------
 1 New York 9876 3.40000009-
 5
 2 Chicago 543 23.3999996-
 19

2 rows selected

By changing the display width of column 4 to 15 characters, you get the following
display:

syb> .w 4,15
syb> .x
 pk colchar8 colint colreal
---------- -------- ---------- ---------------
 1 New York 9876 3.400000095
 2 Chicago 543 23.399999619

2 rows selected

Using the CONNECT Command 3-15

To display the current display width settings, use a question mark after the .W
command, as follows:

syb> .w ?
Truncate/Fold mode is: F
Column width settings are:
 Column 4: 15
 All other columns: 10

Exiting CONNECT
The next example inserts values into a table, selects and displays them, then quits
from CONNECT:

syb> insert into tedtab3 values (3,9,1,8);
1 row affected
syb> select * from tedtab3;
 pk coltinyint colbit colsmint
---------- ---------- ---------- ---------------
 1 255 0 -32768
 2 0 0 32768
 3 9 1 8

3 rows selected
syb> .q
Disconnecting from 'syb' database
>

Using UniVerse Output Mode
The following example shows how to use two UniVerse output files to save the
results of two SELECT statements.

First, enter UniVerse output mode while you are connected to the data source ora:

ora> .U UVFILE1
Opening file UVFILE1

Next, select data from a table in ora:

ora> SELECT * FROM TEDTAB2;
COLC...... COLD......

detroit lions
pittsburgh steelers
new york giants

3 records listed.

3-16 UniVerse BASIC SQL Client Interface Guide

Now switch to a different UniVerse output file and enter another SELECT
statement:

ora> .U UVFILE2
Closing file UVFILE1
Creating file "UVFILE2" as Type 30.
Creating file "D_UVFILE2" as Type 3, Modulo 1, Separation 2.
Added "@ID", the default record for RetrieVe, to "D_UVFILE2".
Opening file UVFILE2

ora> SELECT DISTINCT COLM, COLM+3, COLM*7 FROM TEDTAB7;
COLM...... COLM+3.... COLM*7....

 0 3 0
 1 4 7
 4 7 28
 6 9 42

4 records listed.

Next, exit CONNECT and enter two SELECT statements, one on UVFILE1 and
one on UVFILE2:

ora> .Q
Disconnecting from 'ora' database
>SELECT * FROM UVFILE1;
COLC...... COLD......

detroit lions
pittsburgh steelers
new york giants

3 records listed.
>SELECT * FROM UVFILE2;
COLM...... COLM+3.... COLM*7....

 6 9 42
 0 3 0
 1 4 7
 4 7 28

4 records listed.
>

Using the CONNECT Command 3-17

Using Block Mode
In the following example, the .B command enables block mode. The user enters a
multiline SELECT statement, terminating it with the string GO instead of a
semicolon.

syb> .b go
syb> select * from emps
SQL+
SQL+where deptno < 300
SQL+go
 empno lname fname deptno
--------- ---------- ---------- ---------
 17543 Smith George 301
 23119 Brown George 307

2 rows selected

The next example enables block mode and creates a stored procedure on an
ORACLE database:

ora> .B ON
ora> CREATE PROCEDURE sal_raise (emp_id IN NUMBER,
SQL+sal_incr IN NUMBER) AS
SQL+BEGIN
SQL+UPDATE emp
SQL+SET sal = sal + sal_incr
SQL+WHERE empno = emp_id;
SQL+IF SQL%NOTFOUND THEN
SQL+raise_application_error (-20011, 'Invalid Employee Number:'||
SQL+TO_CHAR (emp_id));
SQL+END IF;
SQL+END sal_raise;
SQL+<Return>
ora>

3-18 UniVerse BASIC SQL Client Interface Guide

Using the SQL Client Interface 4-1

4
Using the

SQL Client Interface

BASIC programs use the SQL Client Interface to exchange data between a
UniVerse client and a server data source. A data source is a network node and a
DBMS on that node. For example, you might have an order entry system on the
machine running UniVerse and want to post this information to a central data-
base. You use the SQL Client Interface to connect your applications to the data
source and exchange data.

This chapter describes how to do the following:

• Establish a connection to a data source
• Execute SQL statements at the data source
• Execute procedures stored on the data source
• Terminate the connection

Establishing a Connection to a Data Source
Before connecting to a data source, the application does two things:

• It creates an SQL Client Interface environment, in which all connections to
both UniVerse and ODBC data sources are established.

• It creates one or more connection environments. Each connection environ-
ment supports a connection to a single data source.

If you are connecting to a UniVerse data source, it must be defined in the
uvodbc.config file.

As of Release 9, each UniVerse process opens a local connection to itself. This is
true for both user and server processes. BASIC programs running on a UniVerse

4-2 UniVerse BASIC SQL Client Interface Guide

server can use the @variables @HENV, @HDBC, and @HSTMT to refer to this
local connection. Using these @variables in your programs lets you execute
programmatic SQL statements without having to allocate SQL Client Interface,
connection, and statement environments.

Connecting to NLS-Enabled Data Sources
NLS (National Language Support) is fully documented in UniVerse NLS Guide.

Certain combinations of UniVerse client and server may not reliably transfer data
because of a mismatch in the locale settings at the client end. The following
sections show which combinations of server locale specifications are allowed
depending on the type of client and the NLS states of both client and server.

Note: The SQL Client Interface can connect to an ODBC data source only if the
client system is running with NLS mode turned off.

Release 9.4 (or Later) Client and Release 9.4 (or Later) Server. The following
table shows which combinations of locale specifications are allowed depending
on the NLS status of the client and the server.

Release 9.3 (or Earlier) Client and Release 9.4 (or Later) Server. UniVerse
releases before 9.4 do not support NLS. Therefore any Release 9.3 (or earlier)
client can connect to a Release 9.4 (or later) server only if the default server map as
set by the NLSDEFSRVMAP is ISO8859-1+MARKS or ASCII+MARKS. If server
locale support is enabled, NLSDEFSRVLC is used, if valid.

Server NLS
Locale State

Client NLS
Locale State Action

ON ON, or
requested via

SQLSet-
ConnectOption

Client NLSLOCALE or requested NLSLO-
CALE used if ID is valid. If ID is not valid, the
connection is rejected.

OFF, and not
requested via

SQLSet-
ConnectOption

Server default locale used if valid.

OFF ON Connection rejected unless requested locale is
WIN:0409, US-ENGLISH, or OFF.

OFF No server locale used.

Using the SQL Client Interface 4-3

Release 9.4 (or Later) Client and Release 9.3 (or Earlier) Server. Because
UniVerse releases before 9.4 do not support NLS, Release 9.4 (or later) clients can
connect to Release 9.3 (or earlier) servers only if the requested locale is WIN:0409,
US-ENGLISH, or OFF.

Allocating the Environment
The SQL Client Interface environment is a data structure that provides the context
for all future connections to both UniVerse and ODBC data sources. You allocate
the environment with the SQLAllocEnv function. This function allocates memory
for an environment and returns its address in a variable. This variable is the envi-
ronment handle. You can allocate more than one environment at a time.

BASIC programs running locally on a UniVerse server can use the @variable
@HENV to refer directly to the SQL Client Interface environment. They do not
need to allocate one.

Allocating the Connection Environment
The connection environment is a data structure that supports a connection to a
single data source. One SQL Client Interface environment can support many
connection environments. You allocate the connection environment with the
SQLAllocConnect function. This function allocates memory for a connection
environment and returns its address, or handle, in a variable. Use this variable
when you refer to a specific connection. You can establish more than one connec-
tion environment at a time.

BASIC programs running locally on a UniVerse server can use the @variable
@HDBC to refer directly to the connection environment. They do not need to allo-
cate one.

Connecting to a Data Source
Before or after issuing an SQLConnect call to connect to a UniVerse data source,
an application can establish certain conditions for the connection by issuing one
or more SQLSetConnectOption calls. Use the SQLSetConnectOption call to
specify the default transaction isolation level, specify the NLS locale information
to use, or supply the user ID and password for the connection, if required.

You do not use SQLSetConnectOption for login ID and password if you are
connecting to the localuv server.

Use SQLConnect to establish a session between your application and the DBMS
on the server. A BASIC program running locally on a UniVerse server does not

4-4 UniVerse BASIC SQL Client Interface Guide

need to do SQLConnect. It is automatically connected to the localuv server, at the
schema or account where the program is running. When connecting to a remote
UniVerse server, the SQLConnect function contains an account or schema name,
or a pathname specifying where the UniVerse data source is located. When
connecting to an ODBC server, SQLConnect contains the name of the data source
and information needed to log in to the data source. After the connection is estab-
lished, you can allocate an SQL statement environment to prepare to process SQL
statements.

Connecting to a UniVerse Server with NLS Enabled
When a client program connects to an NLS-enabled server, the values the server
uses depend on the settings of the parameters in the uvconfig file, as well as values
from the client’s current locale settings and its uvodbc.config file. All these values
can be explicitly set by the client.

The server honors the following configurable parameters in the uvconfig file:

When the client application starts, it determines the default locale values to send
to the server as follows:

1. It gets the current locale settings.

2. It reads the uvodbc.config file, if found, and replaces the current locale settings
with values set by uvodbc.config.

Client programs can use the SQLSetConnectOption to override any of the
default locale values.

If the specified locale information is incorrect, SQLConnect returns an error and
does not connect to the server.

Parameter Description

NLSMODE Switches NLS mode on or off. A value of 1 indicates NLS is
on, a value of 0 indicates NLS is off. If the value is 1, users
can switch of NLS mode by setting their $UVNLSOFF envi-
ronment variable to 1.

NLSLCMODE Switches locale support on or off. A value of 1 enables
locales for the whole UniVerse system. The value is ignored
if NLSMODE is set to 0. A value of 0 turns off locales even
if NLSMODE is set to 1.

NLSDEFSRVLC Specifies the default locale for a UniVerse server, which is
used by all client programs accessing the server.

Using the SQL Client Interface 4-5

Processing SQL Statements
First you allocate an SQL statement environment, then you execute SQL state-
ments. If your application is running locally on a UniVerse server, it can execute
SQL statements without allocating a statement environment by using the @vari-
able @HSTMT.

Allocating the SQL Statement Environment
The SQL statement environment is a data structure that provides a context for
delivering SQL statements to the data source, receiving data from the data source
row by row, and sending data to the data source. An SQL statement environment
belongs to one connection environment. You allocate the SQL statement environ-
ment with the SQLAllocStmt function. This function allocates memory for an
SQL statement environment and returns its address, or handle, in a variable.

You can establish more than one SQL statement environment for the same connec-
tion environment.

BASIC programs running locally on a UniVerse server can use the @variable
@HSTMT to refer directly to the SQL statement environment. They do not need to
allocate one.

Executing SQL Statements
You can execute SQL statements in two ways:

• Direct execution
• Prepared execution

Your SQL statements must conform to the SQL language and conventions
supported by the server’s DBMS engine. For example, you cannot execute
RetrieVe commands on a UniVerse data source, or SQL*Plus commands such as
DESCRIBE on an ORACLE data source. ODBC data sources can use SQL
language that is consistent with the ODBC grammar specification as documented
in Appendix C of the Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide.

If you are executing SQL statements on an ODBC data source running SYBASE,
remember that it may treat identifiers and keywords case-sensitively. Also, if you
are connected to an ODBC data source and you execute a stored procedure or
enter a command batch with multiple SELECT statements, the results of only the
first SELECT statement are returned.

4-6 UniVerse BASIC SQL Client Interface Guide

Executing SQL Statements Directly
Direct execution is the simplest way to execute an SQL statement. Use the
SQLExecDirect function to execute an SQL statement once, or when your
program does not need information about the column results before executing the
statement.

Preparing and Executing SQL Statements
Use prepared execution when you want to execute the same SQL statement more
than once or when you need information about SQL statement results before the
statement is executed. Use the SQLPrepare and SQLExecute functions for
prepared execution. SQLPrepare prepares the SQL statement once, then SQLExe-
cute is called each time the SQL statement is to be executed.

For example, if you are inserting many data rows in a table, use the SQLPrepare
function once, then use one SQLExecute for each row you insert. Before each
SQLExecute call, set new values for the data to insert. To set new data values, you
use parameter markers in your SQL statement (see “Using Parameter Markers in
SQL Statements”). Using the SQLPrepare and SQLExecute functions in this way
is more efficient than using separate SQLExecDirect calls, one for each row.

Using Parameter Markers in SQL Statements
You can use parameter markers in SQL statements to mark the place where you
will insert values to send to the data source. If your SQL statements contain
parameter markers, you must call SQLBindParameter once for each marker, to
specify where to find the current value for each marker. For example, assume you
create a table on the data source with the following command:

CREATE TABLE STAFF
(EMPNUM CHAR(3) NOT NULL,
EMPNAME CHAR(20),
GRADE INT,
CITY CHAR(15))

To insert data into this table, you might use SQLExecDirect to execute a series of
INSERT statements. For example:

STATUS = SQLExecDirect(STMTENV,"INSERT INTO STAFF VALUES ('E9', 'Edward',
10, 'Arlington')")

STATUS = SQLExecDirect(STMTENV,"INSERT INTO STAFF VALUES ('E10', 'John',
12, 'Belmont')")

STATUS = SQLExecDirect(STMTENV,"INSERT INTO STAFF VALUES ('E11', 'Susan',
13, 'Lexington')")

STATUS = SQLExecDirect(STMTENV,"INSERT INTO STAFF VALUES ('E12', 'Janet',
13, 'Waltham')")

Using the SQL Client Interface 4-7

The SQLExecDirect function takes two input variables. The first, STMTENV, is
the name of the SQL statement environment. The second is the INSERT statement
to be sent to the data source for execution.

Using several SQLExecDirect calls to insert data in this way is relatively slow. A
better way to do this is to prepare the following INSERT statement for execution:

SQL = "INSERT INTO STAFF VALUES (?, ?, ?, ?)"
STATUS = SQLPrepare(STMTENV,SQL)

Each question mark in the statement is a parameter marker representing a value
to be obtained from the application program when you execute the statement.
You use the SQLBindParameter function to tell the SQL Client Interface where to
find the variables that will resolve each question mark in the statement. When the
SQLExecute call is issued, the SQL Client Interface picks up the variables you
provided for these parameter markers, does any required data conversions, and
sends them to the data source, which executes the SQL statement with the new
values.

Before you execute this statement, use SQLBindParameter calls to tell the SQL
Client Interface where to find the parameter values to use in the statement. For
example:

STATUS = SQLBindParameter(STMTENV, 1, SQL.B.BASIC, SQL.CHAR, 3, 0, EMPNUM)
STATUS = SQLBindParameter(STMTENV, 2, SQL.B.BASIC, SQL.CHAR, 20, 0, EMPNAME)
STATUS = SQLBindParameter(STMTENV, 3, SQL.B.BASIC, SQL.INTEGER, 0, 0, GRADE)
STATUS = SQLBindParameter(STMTENV, 4, SQL.B.BASIC, SQL.CHAR, 15, 0, CITY)
STATUS = SQLPrepare(STMTENV, "INSERT INTO STAFF VALUES (?, ?, ?, ?)")

.

.

.
EMPNUM = 'E9'
EMPNAME = 'Edward'
GRADE = 10
CITY = 'Arlington'
STATUS = SQLExecute(STMTENV)
EMPNUM = E10'
EMPNAME = 'John'
GRADE = 12
CITY = 'Belmont'
STATUS = SQLExecute(STMTENV)

.

.

.

The SQLBindParameter function takes seven input variables. The first,
STMTENV, is the name of the SQL statement environment. The second is the
number of the parameter marker in the INSERT statement to be sent. The third
(SQL.B.BASIC) and fourth (SQL.CHAR, SQL.INTEGER) specify data types, used

4-8 UniVerse BASIC SQL Client Interface Guide

to convert the data from BASIC to SQL data types. The fifth and sixth specify the
parameter’s precision and scale. The seventh is the name of the variable that will
contain the value to use in the INSERT statement.

You can also use parameter markers with SELECT statements when you want to
specify variable conditions for queries. For example, you might use the following
statements to select rows from STAFF when CITY is a variable loaded from your
application:

STATUS = SQLBindParameter(STMTENV, 1, SQL.B.BASIC, SQL.CHAR, 15, 0, CITY)
STATUS = SQLPrepare(STMTENV, "SELECT * FROM STAFF WHERE CITY = ?")
PRINT "ENTER CITY FOR QUERY":
INPUT CITY
STATUS = SQLExecute(STMTENV)

Processing Output from SQL Statements
Once you execute an SQL statement at the data source, you can issue calls that tell
you more about the results and that let you bring results from the data source
back to your application.

You use the SQLNumResultCols function to find out how many columns the
SQL statement produced in the result set. If it finds columns, you can use SQLDe-
scribeCol or SQLColAttributes to get information about a column, such as its
name, the SQL data type it contains, and (on UniVerse data sources) whether it is
defined as multivalued.

You use the SQLRowCount function to find out if the SQL statement changed
any rows in the table. For example, if an SQL UPDATE statement changes 48
rows, SQLRowCount returns 48.

If an SQL statement produces a set of results at the data source, we say that a
cursor is opened on the result set. You can think of this cursor as a pointer into the
set of results, just as a cursor on a screen points to a particular line of text. An
open cursor implies that there is a set of results pending at the data source.

To bring the results of the SQL statement from the data source to your application,
use the SQLBindCol and SQLFetch functions. You use SQLBindCol to tell the
SQL Client Interface where to put data from a specific column and what applica-
tion data type to store it as. For example, to print rows from the STAFF table, you
might write the following:

SQLBindCol(STMTENV, 1, SQL.B.DEFAULT, EMPNUM)
SQLBindCol(STMTENV, 2, SQL.B.DEFAULT, EMPNAME)
SQLBindCol(STMTENV, 3, SQL.B.DEFAULT, EMPGRADE)
SQLBindCol(STMTENV, 4, SQL.B.DEFAULT, EMPCITY)

Using the SQL Client Interface 4-9

LOOP
WHILE STATUS <> SQL.NO.DATA.FOUND DO

STATUS = SQLFetch(STMTENV)
IF STATUS <> SQL.NO.DATA.FOUND
THEN

PRINT EMPNUM form:EMPNAME form:EMPGRADE form:EMPCITY
END

REPEAT

The SQLBindCol function takes four input variables. The first, STMTENV, is the
name of the SQL statement environment. The second is the number of the
column. The third specifies the data type to which to convert the incoming data.
The fourth is the name of the variable where the column value is stored.

For each column, a call to SQLBindCol tells the SQL Client Interface where to put
each data value when SQLFetch is issued. Each SQLFetch stores the next row of
data in the specified variables. Normally you fetch data rows until the end-of-data
status flag is returned to the SQLFetch call.

The SQL.B.DEFAULT argument to SQLBindCol lets the result column’s SQL data
type determine the BASIC data type to which to convert data from the data
source. For information about converting data, see Appendix A.

For other examples showing how to execute SQL statements, see Appendix B.

Freeing the SQL Statement Environment
Once all processing of an SQL statement is complete, use SQLFreeStmt to free
resources in an SQL statement environment. Use one of the following options in
the SQLFreeStmt call:

• SQL.CLOSE closes any open cursor associated with an SQL statement envi-
ronment and discards any pending results. The SQL statement
environment can then be reused by executing another SQL statement with
the same or different parameters and bound column variables. SQL.CLOSE
releases all locks held by the data source.

• SQL.UNBIND releases all bound column variables set by SQLBindCol for
the SQL statement environment.

• SQL.RESET.PARAMS releases all parameter marker variables set by
SQLBindParameter for the SQL statement environment.

• SQL.DROP releases the SQL statement environment, frees all resources,
closes any cursor, and cancels all pending results. All column variables are

4-10 UniVerse BASIC SQL Client Interface Guide

unbound and all parameter marker variables are reset. This option termi-
nates access to the SQL statement environment.

For example, the following statement frees the SQL statement environment in the
demonstration program (see Appendix B):

STATUS = SQLFreeStmt(STMTENV, SQL.DROP)

Terminating the Connection
When your program is ready to terminate the connection to the data source, it
should do the following:

• Disconnect from the data source
• Release the connection environment
• Release the SQL Client Interface environment

BASIC programs running locally on a UniVerse server (localuv) using @HSTMT
need not disconnect, release the connection or SQL Client Interface environments.

Use SQLDisconnect to close the connection associated with a specific connection
environment. All active transactions must be committed or rolled back before
disconnecting (see “Transaction Management” on page 4-13). If there are no trans-
actions pending, SQLDisconnect frees all allocated SQL statement environments.

Use SQLFreeConnect to release a connection environment and its associated
resources. The connection environment must be disconnected from the data
source before you use this call or an error occurs.

Use SQLFreeEnv to release the SQL Client Interface environment and all
resources associated with it. Disconnect all sessions with the SQLDisconnect and
SQLFreeConnect functions before you use SQLFreeEnv.

In the demonstration program (see Appendix B), the following statements close
the connection to the data source and free the connection and SQL Client Interface
environments:

STATUS = SQLDisconnect(CONENV)
STATUS = SQLFreeConnect(CONENV)
STATUS = SQLFreeEnv(DBCENV)

Using the SQL Client Interface 4-11

Figure 4-1 shows some function calls used in a BASIC application.

SQLAllocEnv

SQLAllocConnect

SQLConnect

SQLAllocStmt

Process SQL statements

Receive results

SQLFreeStmt

SQLDisconnect

SQLFreeConnect

SQLFreeEnv

CLOSE option

DROP option

Figure 4-1. Function Calls Used in a Simple BASIC Application

SQLSetConnectOption

4-12 UniVerse BASIC SQL Client Interface Guide

Figure 4-2 shows the order of function calls you use to execute a simple SQL
statement.

SELECT statement

Set up connection

SQLFetch

More

SQLFreeStmt

Disconnect

SQLExecute

Statement type

SQLRowCount

No Yes

If repeat

rows?

No

Yes

UPDATE, INSERT,
or DELETE statement

Put data values
into parameter
marker variables

SQLNumResultCols
SQLDescribeCol
SQLBindCol

SQLBindParameter
SQLPrepare

Figure 4-2. Order of Function Calls

Repeatable
execution?

SQLBindParameter
SQLExecDirect

Using the SQL Client Interface 4-13

Transaction Management
Use the UniVerse BASIC statements BEGIN TRANSACTION, COMMIT, ROLL-
BACK, and END TRANSACTION to provide transaction management control in
your application.

• Outside a transaction, changes are committed immediately (autocommit
mode).

• Use BEGIN TRANSACTION to put all current connections into manual
commit mode. Connections established within a transaction are also in
manual commit mode.

• Use COMMIT or ROLLBACK to terminate the transaction.

• Use END TRANSACTION to indicate where to continue processing after
the preceding COMMIT or ROLLBACK statement is executed.

Note: Your application programs should not try to issue transaction control
statements directly to the data source (for instance, by issuing a COMMIT
statement with SQLExecDirect or SQLPrepare). Programs should use
only BASIC transaction control statements. The SQL Client Interface
issues the correct combination of transaction control statements and
middleware transaction control function calls that are appropriate for the
DBMS you are using. Trying to use SQLExecDirect and SQLExecute to
execute explicit transaction control statements on ODBC data sources can
cause unexpected results and errors.

Distributed Transactions
A distributed transaction is a transaction that updates more than one data source
or that updates a local UniVerse database and one or more data sources. Be careful
when you use distributed transactions. The UniVerse transaction manager does
not support the two-phase commit protocol that ensures that all operations are
either committed or rolled back properly. If a COMMIT fails, the systems
involved may be out of sync, since the local part of the COMMIT can succeed
even though the remote part fails.

If your program uses distributed transactions, you must ensure that it can recover
from a COMMIT failure, or that enough information is available to let you manu-
ally restore the databases to a consistent state.

4-14 UniVerse BASIC SQL Client Interface Guide

Nested Transactions
UniVerse supports nested transactions—that is, within any transaction you can
begin and end one or more subtransactions. Only one transaction is active at any
time, although a transaction and several subtransactions may exist simulta-
neously. Each nested transaction exists on its own transaction nesting level. When
no transaction currently exists, the program is at transaction nesting level 0.

An SQLFetch call must be issued at the same, or deeper, transaction nesting level
as the SQLExecute or SQLExecDirect call associated with it; it cannot be issued at
a higher nesting level. This is because the cursors opened within a transaction are
closed when that transaction is committed or rolled back.

To preserve locking integrity, an SQLFetch call must be issued at the same trans-
action isolation level as the corresponding SQLExecute or SQLExecDirect call. If
the nested transaction were running at an isolation level higher than the isolation
level of the parent transaction, the SQLFetch would be executed in a different
transaction environment from that of the SQLExecute call. If such a transaction
were rolled back, it would release all of the locks acquired to support the
SQLFetch. If an SQLFetch call is issued at a different transaction isolation level
from the SQLExecute or SQLExecDirect call, SQL.ERROR is returned, and
SQLSTATE is set to S1000.

UniVerse Data Sources. When the SQL Client Interface connects to a UniVerse
data source, the application must maintain a correspondence between the transac-
tion nesting level on the client and the transaction nesting level on the server. All
connections and disconnections must be established outside of a transaction (at
transaction nesting level 0) on the client.

Data definition statements (CREATE SCHEMA, CREATE TABLE, CREATE VIEW,
CREATE INDEX, CREATE TRIGGER, ALTER TABLE, DROP SCHEMA, DROP
TABLE, DROP VIEW, DROP INDEX, DROP TRIGGER, GRANT, and REVOKE)
are not allowed within a transaction. All data definition statements executed by
SQLExecute and SQLExecDirect must be issued at transaction nesting level 0 on
the client.

ODBC Data Sources. When the SQL Client Interface connects to an ODBC data
source, all SQLExecute and SQLExecDirect calls must be issued either outside of
a transaction (at transaction nesting level 0) or at transaction nesting level 1 on the
client. If one of these functions is issued at a transaction nesting level higher than
level 1, SQL.ERROR is returned and SQLSTATE is set to IM983.

Using the SQL Client Interface 4-15

Detecting Errors
Any SQL Client Interface function call can generate errors. Use the SQLError call
after any function call for which the returned status indicates an error condition.

ODBC data sources generally return a consistent error for the same error
condition.

Each DBMS returns its own error code in response to SQL statements that
generate errors. The same SQL statement generating the same type of error
usually has a different error code, depending on the particular data source DBMS.
For example, when you try to drop a nonexistent table, each DBMS generates a
different native error code.

You can use the MAPERROR parameter in the configuration file to map DBMS
error codes to a common SQLSTATE value. This makes it easier to write applica-
tions that are portable among supported DBMSs. For example, suppose an SQL
statement returns an illegal option error code of 950999 from UniVerse, 1234 from
ORACLE and –777 from INFORMIX-OnLine. Your program can test for this error
condition by checking for an SQLSTATE value of S1009, regardless of which
DBMS it is connected to, if the following MAPERROR statements are in the
uvodbc.config file:

MAPERROR = S1009 = 950999 (for UniVerse data sources)

The SQL Client Interface provides default mappings for the following common
error types:

For more information about error codes, see Appendix C.

Errors can be detected by the SQL Client Interface, by the UniRPC, by the ODBC
driver, or by the data source. See the SQLError function in Chapter 7 for more
information.

UniVerse Error and System Messages
When you are connected to a UniVerse data source, informational messages, such
as “Creating column 1” returned by CREATE TABLE, and error conditions, such
as “Table already exists” returned by CREATE TABLE, are suppressed.

SQLSTATE Error Described

S0001 Base table or view already exists

S0002 Base table not found

4-16 UniVerse BASIC SQL Client Interface Guide

Error conditions such as syntax errors are returned to the client program with an
error code and an SQLSTATE value. Client programs should check the return
status of every function call issued, including calls that request the UniVerse
server to execute a programmatic SQL statement. The client program should use
the SQLError call to determine the reason for the error.

SQLSTATE Values
The SQLError function provides an SQLSTATE value, a UniVerse error code, and
the error message text. Table 4-1 shows all possible SQLSTATE values returned by
SQLError, with examples of a UniVerse error code and text. For a complete list of
SQLSTATE values, see Appendix C.

UniVerse uses SQLSTATE values defined by the ODBC specification as well as a
few defined in the SQL-1992 standard. All errors that cannot be matched to a
more specific category return error S1000, which means “general error detected
by the data source (i.e., UniVerse).”

Table 4-1. Client Program Error Codes

SQLSTATE Description

21S01 The number of columns inserted does not match the number
expected. For example:
950059 Number of columns inserted doesn't match number
required.

21S02 The number of columns selected does not match the number
defined in a CREATE VIEW statement. For example:
950415 More explicit column names than column selected.

22005 Data type does not match. For example:
950121 Column "ORDER.NOs" data type does not match insert
value.

23000 An integrity constraint was violated. For example:
950110 Column referential integrity violation.

3F000 The schema name is invalid. For example:
950342 Schema INVENTORY does not exist.

40000 The transaction was rolled back. For example:
950604 Fatal error: ISOLATION level cannot be changed
during a transaction

40001 An SQL statement with NOWAIT encountered a conflicting lock.

Using the SQL Client Interface 4-17

Fatal UniVerse errors that use error codes from 050000 through 050020 cause the
application program to exit and return to the UniVerse prompt. Fatal UniVerse
errors outside this range of error codes return the program to the previous execu-
tion environment and set the @SYSTEM.RETURN.CODE variable to –1.

Displaying Environment Variables in RAID
In RAID you can use the variable/ command to display environment variables.
For example, the following command displays the SQL Client Interface environ-
ment variable DBCENV:

:: DBCENV/
 This is an ODBC Environment variable.
 It has 2 connection environment(s).

The next two commands display two connection environment variables, ODBC1
and ODBC2:

:: ODBC1/
 This is an ODBC connection environment variable.
 It is connected and has 1 statement environment(s).

42000 User lacks SQL privilege or operating system permissions for
this operation. For example:
950076 Permission needed to insert records in table
"INVENTORY".

IA000 Output from the EXPLAIN keyword.

S0001 The table or view already exists. For example:
950458 Table INVENTORY already exists in VOC.

S0002 The table or view was not found. For example:
950455 View EMPLOYEES does not exist.

S0021 The column already exists. For example:
Duplicate column name.

S0022 The column was not found. For example:
950418 Table constraint has an undefined column ORDER.NO.

S1000 A general error was detected by the data source (server). For
example:
950427 An association column must be multivalued.

Table 4-1. Client Program Error Codes (Continued)

SQLSTATE Description

4-18 UniVerse BASIC SQL Client Interface Guide

:: ODBC2/
 This is an ODBC connection environment variable.
 It is not connected.

The next command displays the SQL statement environment variable STMTENV:

:: STMTENV/
 This is an ODBC statement environment variable.

If an SQL statement is attached to the statement environment, the variable/
command displays it. For example:

The SQL statement is select empnum, empname, grade, city
from sqlcostaff

Calling and Executing Procedures 5-1

5
Calling and Executing

Procedures

This chapter describes how to call and execute procedures stored on a UniVerse
data source.

Client programs can call and execute procedures that are stored on a database
server. Procedures can accept and return parameter values and return results to
the calling program.

Procedures let developers predefine database actions on the server. Procedures
can provide a simple interface to users, insulating them from the names of tables
and columns as well as from the syntax of SQL. Procedures can enforce additional
database rules beyond simple referential integrity and constraints. Such rules
need not be coded into each application that references the data, providing consis-
tency and easy maintenance.

Procedures can provide a significant performance improvement in a client/server
environment. Applications often have many steps, where the result from one step
becomes the input for the next. If you run such an application from a client, it can
take a lot of network traffic to perform each step and get results from the server. If
you run the same program as a procedure, all the intermediate work occurs on the
server; the client simply calls the procedure and receives a result.

What Can You Call as a UniVerse Procedure?
Typically you call a UniVerse BASIC subroutine as a procedure. You can also call a
UniVerse BASIC program, a paragraph or stored sentence, a proc (ProVerb), a
UniVerse command, or a remote command. You can call any of your existing
programs, subroutines, and most of your existing paragraphs, stored sentences,

5-2 UniVerse BASIC SQL Client Interface Guide

and procs as procedures. You can call almost any UniVerse command as a
procedure.

To call a UniVerse procedure, use SQLExecDirect or SQLExecute to execute a
CALL statement. There are two formats of the CALL statement, one for calling
UniVerse BASIC subroutines and the other for calling paragraphs, sentences,
commands, programs, and procs.

If you call a UniVerse BASIC subroutine, you use the following CALL statement
syntax, which lets you pass a comma-separated list of parameters within paren-
theses as arguments to the subroutine:

CALL procedure [([parameter [,parameter]…])]
Parameters can be literals or parameter markers. The number and order of param-
eters must correspond to the number and order of arguments expected by the
subroutine.

For example, to call subroutine SUBX which requires a filename and a fieldname
as arguments, you can use SQLExecDirect to execute a call statement such as:

CALL SUBX ('MYFILE','MYFIELD')

Or you could bind parameter number 1 to a program variable, load the desired
field name into that variable, and execute:

CALL SUBX ('MYFILE',?)

The second format for the CALL statement is used to call a UniVerse BASIC
program or a Universe command that accepts a string of arguments after the verb.
In this case you use the standard UniVerse syntax after the procedure name,
which lets you specify keywords, literals, and other tokens as part of the
command line. You cannot use parameter markers with this syntax. You do not
use parentheses, nor do you separate arguments with commas:

CALL procedure [argument [argument]…]
For example, to obtain a listing of the first three records in MYFILE, call the
UniVerse LIST command by executing:

CALL LIST MYFILE SAMPLE 3

Processing UniVerse Procedure Results
The output of a procedure call, returned to the client application if the procedure
executes successfully, consists of an SQL result and (optionally) output parameter

Calling and Executing Procedures 5-3

values. The type and contents of these results are, of course, determined by the
procedure itself.

An SQL result is either a set of fetchable rows (similar to what is returned by a
SELECT statement) or a count of affected rows (similar to what is returned by an
UPDATE statement). Usually the client application is written with the knowledge
of what kind of results are produced by any procedure it calls, but if the client
application does not know the nature of the procedure it is calling, the first thing
it should do after executing the procedure is to call SQLNumResultCols to deter-
mine whether there is a fetchable result set. If there are any result columns the
application can use SQLColAttributes, SQLBindCol, and SQLFetch to retrieve
the results in the usual way.

Note: Information about the SQL result of a CALL statement is not available
until after the statement has been executed. Therefore, if you SQLPrepare
a CALL statement and then want to use SQLNumResultCols, SQLCol-
Attributes, or SQLRowCount, you must first SQLExecute the statement.
Otherwise the SQLNumResultCols (etc.) call receives a function sequence
error (SQLSTATE = S1010).

Every call to a UniVerse procedure produces one of the following SQL results:

• Print result set
• Multicolumn result set
• Affected-row count

Print Result Set
One very common UniVerse result set is called a print result set. This is a one-
column result set (SQLNumResultCols returns 1) whose rows are the lines of
(screen) output produced by the called program, paragraph, command, or proc.
The client application should use SQLBindCol to bind the one output column to
a program variable, then use SQLFetch to return each print line into that variable.

Multicolumn Result Set
If the called procedure is a UniVerse BASIC subroutine containing SQL SELECT
statements, the result set is called a multicolumn result set (SQLNumResultCols
returns a positive integer). This result set comprises the fetchable rows produced
by the last SELECT issued by the procedure before it exited. The client application
should bind each output column to a program variable, then fetch the rows of
output into those variables.

5-4 UniVerse BASIC SQL Client Interface Guide

Affected-Row Count
If there are no result columns (SQLNumResultCols returns 0), the application
can find out how many rows were affected in the database by calling
SQLRowCount.

Output Parameter Values
In addition to an SQL result, some procedures return output in one or more
output parameters. Before a client application calls such a procedure, it must use
SQLBindParameter to indicate which parameters are output parameters and to
assign a variable location for each. Then, after the procedure returns, the assigned
variables contain the output values supplied by the procedure.

Processing Errors from UniVerse Procedures
The client application should always check the status of the SQLExecute or
SQLExecDirect function used to execute a procedure call. If this status indicates
an error, the application should use the SQLError function to obtain the
SQLSTATE, UniVerse error code, and error message text that describe the error.

Calls to some UniVerse procedures return a status of SUCCESS even though the
procedure encountered some kind of error. This is true for many procedures
which produce a print result set (paragraphs, commands, procs, and some
UniVerse BASIC programs). The client application might have to examine the
contents of the print result set or display it for a user, in order to determine
whether the procedure executed correctly. For example, suppose a client issues
the following call:

CALL CREATE.INDEX MYFILE BADF

where BADF is not a valid field name in MYFILE. Execution of this call returns
SUCCESS status, and the print result set contains the following error message
produced by the UniVerse server when it tried to execute the CREATE.INDEX
command:

Cannot find field name BADF in file dictionary or VOC,
no index created.

Calling and Executing ODBC Procedures
A BASIC client program that is connected to an ODBC data source can call and
execute procedures stored on the server, provided that the ODBC driver and the

Calling and Executing Procedures 5-5

server’s database support a procedure call mechanism. The standard ODBC
grammar for a procedure call statement is:

{ call procedure [([parameter [,parameter]…])]}
As when calling UniVerse procedures, you must execute (not simply prepare) a
call statement before you can successfully use any of the following functions to
inquire about the procedure’s results:

• SQLNumResultCols
• SQLColAttributes
• SQLRowCount

5-6 UniVerse BASIC SQL Client Interface Guide

How to Write a UniVerse Procedure 6-1

6
How to Write

a UniVerse Procedure

A UniVerse procedure is a program that runs on a UniVerse server and can be
called by UCI and BCI client applications. Client applications call a procedure by
executing an SQL CALL statement. A UniVerse procedure can be any of the
following:

• A UniVerse command
• A remote command
• A paragraph or stored sentence
• A proc (ProVerb)
• A UniVerse BASIC program
• A UniVerse BASIC subroutine

UniVerse BASIC programs, stored sentences and paragraphs, commands, and
ProVerb procs that are defined in the VOC can always be called as procedures.
UniVerse BASIC programs and subroutines should be locally, normally, or
globally cataloged, although it is also possible to call a UniVerse BASIC program
directly if the source code is stored in the BP file.

This chapter discusses the rules for using paragraphs, commands, and procs as
procedures. It also discusses how to write UniVerse BASIC procedures including
input and output parameters, result set generation, and the types of errors that
can be produced by a UniVerse BASIC procedure.

6-2 UniVerse BASIC SQL Client Interface Guide

Using UniVerse Paragraphs, Commands, and
Procs as Procedures
You can call most UniVerse paragraphs, commands, and procs as procedures, as
long as they conform to the following rules:

• If user input is required (if a paragraph contains the <<...>> syntax for
in-line prompting, for example), the input must be supplied by DATA
statements.

• The paragraph, command, or proc cannot invoke a UniVerse menu.

• The paragraph, command, or proc cannot invoke any of the following
UniVerse commands:

When a UniVerse paragraph, command, or proc is called as a procedure, all
output lines that would ordinarily be sent to the terminal screen are stored in a
special print file. These output lines make up what is called a print result set. After
the procedure has finished executing, the calling client application can fetch the
contents of the print result set, one line at a time, and process or display this
output.

Note: The special print file used to store a print result set does not affect the
behavior of print-capturing commands, such as COMO or SPOOL, that
might be invoked by the paragraph, command, or proc.

ABORT
ABORT.LOGIN
ANALYZE.SHM
AUTOLOGOUT
CALL
CHDIR
CLEAN.ACCOUNT
GET.STACK
LO
LOGON
LOGOUT
LOGTO
LOGTO.ABORT
MAIL

MAKE
MESSAGE
NOTIFY
PASSWD
PHANTOM
Q
QUIT
RADIX
RAID
REFORMAT
SAVE.STACK
SET.REMOTE.ID
SP.EDIT
SP.TAPE

SREFORMAT
T.BCK
T.DUMP
T.EOD
T.FWD
T.LOAD
T.RDLBL
T.READ
T.REW
T.UNLOAD
T.WEOF
T.WTLBL
UVFIXFILE
VI

How to Write a UniVerse Procedure 6-3

Writing UniVerse BASIC Procedures
The most flexible and powerful UniVerse procedures are written as UniVerse
BASIC programs, usually subroutines.

UniVerse BASIC procedures should be compiled and cataloged (locally, normally,
or globally). If a UniVerse BASIC procedure is uncataloged, it can be called if it is
in the BP directory of the account to which the client application is connected.

The writer of a UniVerse BASIC procedure should specify its characteristics so
that client application programmers know how to call the procedure and what
results it will return. These characteristics should include:

• The number of parameters to be used when calling the procedure

• The definition of each parameter as input, input/output, or output

• The nature of data to be supplied in input and input/output parameters

• The type of SQL result generated (print result set, multicolumn result set,
or affected-row count)

• For a multicolumn result set, how many columns are returned

• The name, data type, etc., of each column in a multicolumn result set

• The types of SQL errors that may be generated

• For each error type, what SQLSTATE and error code are returned

Parameters Used by a UniVerse BASIC Procedure
The SUBROUTINE statement at the beginning of a UniVerse BASIC subroutine
procedure determines how many input and output parameters it requires. The
calling client application program must supply the same number of parameters
(or parameter markers for output parameters) in the same order as they are
expected by the procedure.

For example, a UniVerse BASIC procedure that takes one input parameter
(employee number) and returns one output parameter (person’s name) might be
coded roughly as follows:

SUBROUTINE GETNAME (EMPNO,PERSON)
OPEN "EMPS" TO EMPS ELSE...
READ INFO FROM EMPS,EMPNO ELSE...
PERSON = INFO<1>
RETURN

6-4 UniVerse BASIC SQL Client Interface Guide

A client application would call this procedure with program logic such as the
following:

1. SQLBindParameter: Define parameter marker 1 as an output parameter
which is bound to variable NAME .

2. SQLExecDirect: CALL GETNAME(4765,?)

3. Check status for error.

4. If no error, the name of employee 4765 is now in NAME.

Note: A UniVerse BASIC procedure need not define any parameters. An applica-
tion that calls a procedure with no parameters should not specify any
parameter values or parameter markers in its call.

SQL Results Generated by a UniVerse BASIC Procedure
Every call to a UniVerse procedure returns one of the following types of SQL
result:

• Print result set
• Multicolumn result set
• Affected-row count

This section discusses how the programming of a UniVerse BASIC procedure
determines which type of SQL result it produces.

All output lines that would normally be sent to the terminal screen during the
execution of a procedure are stored in a special print file; in the case of a UniVerse
BASIC procedure, this would, of course, include any PRINT statements issued by
the UniVerse BASIC program. The contents of this special print file will become a
one-column print result set unless the procedure overrides this default behavior
and forces one of the other types of SQL result.

The functionality of client/server procedure calls is greatly enhanced by having
the ability to write procedures that generate multicolumn result sets or
affected-row counts instead of print result sets. Some of the advantages are:

• If a multicolumn result set is generated, output results are delivered into
separate program variables in the calling client. There is no need for the
client to scan each output line and extract individual items of information.

How to Write a UniVerse Procedure 6-5

• The full power of the SQL query language and query optimizer can be used
in a procedure. For example:

– Output rows can be generated from SQL joins, subqueries, unions, and
grouping queries.

– Output columns can be defined using SQL functions and expressions.

– Multivalued data can be dynamically normalized and returned as single-
valued data.

• INSERT, UPDATE, and DELETE statements can be used in a procedure to
modify the database, returning an affected-row count to the caller.

• Data definition statements such as CREATE TABLE, ALTER TABLE,
CREATE VIEW, and GRANT can be executed within a procedure.

• The power of SQL can be combined with the flexibility of UniVerse BASIC
to perform almost any desired function in a callable UniVerse procedure.
This centralizes complex business logic, simplifies the writing of client
applications, and reduces network traffic in a client/server environment.

Procedures generate multicolumn result sets and affected-row counts by
executing SQL statements using the @HSTMT variable. These are discussed in the
following two sections.

Note: @HSTMT is the only variable that can be used to generate a multicolumn
result set or an affected-row count. Other variables can be allocated and
used within a procedure, but their results are strictly internal to the
procedure.

Using @HSTMT in a UniVerse BASIC Procedure to
Generate SQL Results
UniVerse BASIC procedures running on a UniVerse server can use the preallo-
cated variable @HSTMT to execute programmatic SQL statements. If any SQL
statements are executed in this way, the results from the last such statement to be
executed become the SQL result that is returned to the calling client application.
This result, which can be either a multicolumn result set, an affected-row count,
or an SQL error, overrides the default print result set.

The following sample server and client programs show how to use procedures to
simplify a client program’s access to the numbers and names of employees in
various departments. The procedures use a table called EMPS, whose key column
is EMPNUM and whose data columns are EMPNAME and DEPNUM.

6-6 UniVerse BASIC SQL Client Interface Guide

Procedure. This UniVerse BASIC subroutine, SHOWDEPT, uses the @HSTMT
variable to execute a SELECT statement on the server. The SELECT statement
returns a multicolumn result set containing employee numbers and names from
the EMPS table.

SUBROUTINE SHOWDEPT(DEPT)
$INCLUDE UNIVERSE.INCLUDE ODBC.H
SELSTMT = "SELECT EMPNUM, EMPNAME FROM EMPS WHERE DEPNUM=":DEPT
ST = SQLExecDirect(@HSTMT, SELSTMT)
RETURN

Client Program. The following fragment of a BCI client program,
LIST.EMPLOYEES, calls the SHOWDEPT subroutine as a procedure (the same
could be done with a UCI client program):

.

.

.
PRINT "ENTER DEPT NUMBER"
INPUT DEPTNO
ST=SQLBindParameter(HSTMT, 1, SQL.B.BASIC, SQL.INTEGER, 4, 0, DEPTNO)
ST=SQLExecDirect(HSTMT, "CALL SHOWDEPT(?)")
ST=SQLBindCol(HSTMT, 1, SQL.B.NUMBER, EMPNO)
ST=SQLBindCol(HSTMT, 2, SQL.B.CHAR, NAME)
LOOP

WHILE SQL.SUCCESS = SQLFetch(HSTMT) DO
PRINT EMPNO '4R' : " " : NAME

REPEAT
.
.
.

Sample Output. When the client program runs, output such as the following
appears on the terminal screen:

>RUN BP LIST.EMPLOYEES
ENTER DEPT NUMBER
?123
4765 John Smith
2109 Mary Jones
 365 Bill Gale

.

.

.

Procedure. This UniVerse BASIC subroutine, FIXDEPT, uses the @HSTMT vari-
able to execute an UPDATE statement on the server, which changes the

How to Write a UniVerse Procedure 6-7

department number in the EMPS table for all employees in a particular
department:

SUBROUTINE FIXDEPT(OLDDEPT,NEWDEPT)
$INCLUDE UNIVERSE.INCLUDE ODBC.H
UPDSTMT = "UPDATE EMPS SET DEPNUM = ":NEWDEPT
UPDSTMT := " WHERE DEPNUM = ":OLDDEPT
ST=SQLExecDirect(@HSTMT, UPDSTMT)
RETURN

Client Program. The following fragment of a BCI client program,
CHANGE.DEPT, calls the FIXDEPT subroutine as a procedure (the same could be
done with a UCI client program):

.

.

.
PRINT "ENTER OLD DEPT NUMBER: ": ; INPUT OLD
PRINT "ENTER NEW DEPT NUMBER: ": ; INPUT NEW
ST = SQLExecDirect(HSTMT, "CALL FIXDEPT(":OLD:",":NEW:")")
IF ST = 0 THEN

ST = SQLRowCount(HSTMT,ROWS)
PRINT "Department number ":OLD:" has been changed to ":NEW:
PRINT " for ":ROWS:" employees."

END ELSE
PRINT "The EMPS table could not be updated."

END
.
.
.

Sample Output. When the client program runs, output such as the following
bold appears on the terminal screen:

>RUN BP CHANGE.DEPT
ENTER OLD DEPT NUMBER: ?901
ENTER NEW DEPT NUMBER: ?987
Department number 901 has been changed to 987 for 45 employees.

Using the @TMP File in a UniVerse BASIC Procedure
It is relatively easy for a procedure to produce a multicolumn result set when the
data to be returned is already in an existing file, as shown in the examples above.
But there are situations in which you want a procedure to return multicolumn
output that is created on the fly, from a variety of sources, perhaps using complex
calculations. It might be much easier to generate this data by programming in

6-8 UniVerse BASIC SQL Client Interface Guide

UniVerse BASIC than by using some complex SQL join or union with SQL expres-
sions. To accommodate this kind of situation, UniVerse BASIC procedures can use
a virtual file called @TMP.

The general mechanism for using @TMP consists of three steps:

1. Generate the desired data as a dynamic array (referred to below as DARRAY),
using field marks as “row” separators and text marks as “column” separators.

2. Save the dynamic array as a select list.

3. Execute an SQL SELECT from @TMP, using the select list as input.

When the SQL SELECT is executed, the virtual @TMP file appears to have a
number of rows equal to the number of “rows” in DARRAY. The SQL SELECT can
reference virtual fields in @TMP named F1, F2, F3, …, F23, which represent up to
23 text-mark-separated “columns” in DARRAY. The @TMP file also appears to
have an @ID field containing the entire contents of each “row” in DARRAY (the
length of each “row” is not subject to the 255-character limit usually associated
with @ID in UniVerse files).

The virtual @TMP file can be used in any SQL SELECT statement, including joins
and unions. @TMP cannot be referenced with INSERT, UPDATE, or DELETE
statements, however.

The use of @TMP is illustrated in the following example. A client application calls
a UniVerse BASIC procedure to obtain a list of employees whose department is
located in New Hampshire, along with their department number and zip code,
sorted by department number. The EMPS table does not indicate which state and
zip code each department is located in; this information is determined from a list
in the procedure program itself.

Procedure. This UniVerse BASIC subroutine FINDEMPS builds a dynamic array
consisting of department number, zip code, and employee name for each
employee who works in a specified state. It then saves this dynamic array in select
list 9, and uses the @HSTMT variable to execute an SQL SELECT from the virtual
@TMP file specifying select list 9 as the source of the data. The SELECT statement
contains an ORDER BY clause to sort the output by department number.

SUBROUTINE FINDEMPS(INSTATE) ; * Returns dept, zip code, name sorted
by dept

$INCLUDE UNIVERSE.INCLUDE ODBC.H
DARRAY = ""
OPEN "EMPS" TO FVAR ELSE PRINT "OPEN ERROR" ; RETURN
SELECT FVAR
LOOP
READNEXT EMPNUM THEN

How to Write a UniVerse Procedure 6-9

READ EMPREC FROM FVAR,EMPNUM ELSE PRINT "READ ERROR" ; RETURN
NAME = EMPREC<1> ; * EMPREC field 1 contains employee name
DEPT = EMPREC<2> ; * EMPREC field 2 contains department number
GOSUB GETSTATE ; * GETSTATE (not shown) returns STATE & ZIP for this

DEPT
IF STATE = INSTATE THEN

IF DARRAY <> "" THEN DARRAY := @FM
DARRAY := DEPT:@TM:ZIP:@TM:NAME ;* Add 1 "row" with 3 "columns" to

DARRAY
END

END ELSE EXIT
REPEAT
SELECT DARRAY TO 9 ; * Save DARRAY in select list 9
ST=SQLExecDirect(@HSTMT, "SELECT F1,F2,F3 FROM @TMP SLIST 9 ORDER BY 1")
RETURN

Client Program. The following fragment of a BCI client program
EMPS.IN.STATE calls the FINDEMPS subroutine as a procedure (the same could
be done with a UCI client program):

.

.

.
PRINT "ENTER STATE: ": ; INPUT SSS
ST = SQLExecDirect(HSTMT, "CALL FINDEMPS('":SSS:"')")
IF ST = 0
THEN

ST = SQLBindCol(HSTMT, 1, SQL.B.NUMBER, DEPTNO)
ST = SQLBindCol(HSTMT, 2, SQL.B.NUMBER, ZIPCODE)
ST = SQLBindCol(HSTMT, 3, SQL.B.CHAR, EMPNAME)
LOOP

WHILE SQL.SUCCESS = SQLFetch(HSTMT) DO
PRINT DEPTNO '4R' :" ":ZIPCODE '5R%5' :" ":EMPNAME

REPEAT
END

.

.

.

Sample Output. When the client program runs, output such as the following
appears on the terminal screen:

>RUN BP EMPS.IN.STATE
ENTER STATE: ? NH
529 03062 Ann Gale
529 03062 Fred Pickle
987 03431 John Kraneman

6-10 UniVerse BASIC SQL Client Interface Guide

989 03101 Edgar Poe
.
.
.

Errors Generated by a UniVerse BASIC Procedure
When a client application calls a procedure, several types of output results can be
returned to the caller. But a procedure can also generate an SQL error instead of
normal output results. If an error is generated, the calling client application
should detect this by testing the status returned from its SQLExecDirect or
SQLExecute function call, getting SQL ERROR (–1) instead of SQL SUCCESS (0).

A UniVerse BASIC procedure can generate an SQL error either indirectly (by
issuing an SQL statement that causes an error) or directly (by using the UniVerse
BASIC SetDiagnostics function).

If the last SQL statement issued (using @HSTMT) within the procedure before it
returns to the caller encountered an error, that error condition is passed back to
the calling client application, as shown in the following example.

Procedure. This procedure ADDEMP can be called to add a new employee to the
EMPS table:

SUBROUTINE ADDEMP(NEWNUM,NEWNAME,NEWDEPT)
$INCLUDE UNIVERSE.INCLUDE ODBC.H
INSSTMT = "INSERT INTO EMPS VALUES (":NEWNUM
INSSTMT := ",'":NEWNAME:"',":NEWDEPT:");"
ST=SQLExecDirect(@HSTMT, INSSTMT)
RETURN

Client Program. The following fragment of a BCI client program
NEW.EMPLOYEE calls the ADDEMP subroutine as a procedure, providing infor-
mation about a new employee but erroneously assigning him an existing
employee number (the same could be done with a UCI client program):

.

.

.
EMPNO = 2109
FIRSTLAST = "Cheng Du"
DEPNO = 123
CALLSTMT = "CALL ADDEMP (":EMPNO
CALLSTMT := ",'":FIRSTLAST
CALLSTMT := "',":DEPNO:");"
PRINT "The CALL statement is: ":CALLSTMT
ST = SQLExecDirect(HSTMT, CALLSTMT)

How to Write a UniVerse Procedure 6-11

IF ST <> 0 THEN
ERST = SQLError(SQL.NULL.HENV,SQL.NULL.HDBC,HSTMT,STATE,CODE,MSG)
PRINT "SQLSTATE = ":STATE:", UniVerse error code = ":CODE:",

Error text ="
PRINT MSG

END
.
.
.

Sample Output. When the client program runs, output such as the following
appears on the terminal screen:

>RUN BP NEW.EMPLOYEE
The CALL statement is: CALL ADDEMP (2109,'Cheng Du',123);
SQLSTATE = S1000, UniVerse error code = 950060,

Error text = [Ardent][SQL Client][UNIVERSE]UniVerse/SQL:
Attempt to insert duplicate record "2109" is illegal.

A procedure can force an error condition to be returned by using the UniVerse
BASIC SetDiagnostics function. This function sets a procedure-error condition
and stores error text (supplied by the procedure) in the SQL diagnostics area asso-
ciated with @HSTMT. The error condition remains in effect until the next
programmatic SQL statement, or SQLClearDiagnostics, is issued. In particular,
the error condition will be detected by the calling client application if the proce-
dure returns before issuing another SQL statement.

The use of SetDiagnostics to generate a procedure error condition is illustrated in
the following example.

Procedure. This procedure DELEMP can be called to delete an employee from
the EMPS table:

SUBROUTINE DELEMP(OLDNUM)
OPEN "EMPS" TO FVAR ELSE PRINT "OPEN ERROR" ; RETURN
READU REC FROM FVAR,OLDNUM THEN

DELETE FVAR,OLDNUM
END ELSE

JUNK = SetDiagnostics("Employee ":OLDNUM:" does not exist")
END
RETURN

Client Program. The following fragment of a BCI client program RESIGNATION
calls the DELEMP subroutine as a procedure, asking it to delete an employee but

6-12 UniVerse BASIC SQL Client Interface Guide

providing an incorrect employee number (the same could be done with a UCI
client program):

.

.

.
EMPNO = 555
ST = SQLExecDirect(HSTMT, "CALL DELEMP (":EMPNO:")")
IF ST <> 0 THEN

ERST = SQLError(SQL.NULL.HENV,SQL.NULL.HDBC,HSTMT,STATE,CODE,MSG)
PRINT "SQLSTATE = ":STATE:", UniVerse error code = ":CODE:",

Error text ="
PRINT MSG

END
.
.
.

Sample Output. When the client program runs, output such as the following
appears on the terminal screen:

>RUN BP RESIGNATION
SQLSTATE = S1000, UniVerse error code = 950681, Error text =
[Ardent][SQL Client][UNIVERSE]Employee 555 does not exist

Restrictions in UniVerse BASIC Procedures
Several restrictions must be observed when writing a UniVerse BASIC procedure:

• A procedure must not invoke any of the UniVerse commands listed in
“Using UniVerse Paragraphs, Commands, and Procs as Procedures.”

• A procedure must not pause for user input; for example, if any INPUT
statements are executed, the input must be provided by DATA statements.

• A procedure must not execute any (nested) procedure CALL statements
using the @HSTMT variable. Nested procedure calls are allowed only if a
different variable is used.

Fetching Rows and Closing @HSTMT Within a Procedure
If a UniVerse BASIC procedure executes an SQL SELECT using @HSTMT, the
procedure can process the results itself (just like any other UniVerse BASIC
program) using any of the following function calls:

• SQLNumResultCols
• SQLDescribeCol
• SQLColAttributes

How to Write a UniVerse Procedure 6-13

• SQLBindCol
• SQLFetch

If a procedure fetches some of the rows in a SELECT’s result set and then returns
to the calling client application, the remaining rows (but not the fetched rows) are
available for the client to fetch.

If a procedure executes an SQL SELECT, fetches some rows and decides not to
return the remaining rows to the client, it should close the @HSTMT variable:

ST = SQLFreeStmt (@HSTMT, SQL.CLOSE)

It is also necessary to close @HSTMT if the procedure wants to execute another
SQL statement using @HSTMT. Closing @HSTMT discards any pending results
and reinitializes the cursor associated with @HSTMT.

At the time a procedure exits, if @HSTMT has been closed and not reused, and if
SetDiagnostics has not been issued, then a print result set is returned to the caller.
If the procedure executes no PRINT statements, the print result set contains no
rows.

Hints for Debugging a Procedure
If a procedure does not produce the expected results, try the following:

• Ensure that both the procedure and the calling client application check the
status returned by each SQL Client Interface function call (SQLExecDirect,
SQLFetch, and so on).

• Comment out the SQL Client Interface function calls in the procedure, or
close @HSTMT before exiting, so that the print results are returned to the
client; if necessary, add diagnostic PRINT statements to the procedure
program.

• Debug UniVerse BASIC programs and subroutines by running them
directly, before calling them from a client application.

6-14 UniVerse BASIC SQL Client Interface Guide

SQL Client Interface Functions 7-1

7
SQL Client Interface

Functions

This chapter describes the SQL Client Interface functions in alphabetical order.
Table 7-1 lists the SQL Client Interface functions according to how they are used.

Table 7-1. Functions and Their Uses

Category Functions

Initializing SQLAllocEnv
SQLAllocConnect
SQLSetConnectOption
SQLConnect
SQLAllocStmt
SQLPrepare

Exchanging data SQLTransact
SQLBindParameter
SQLSetParam
SQLExecute
SQLExecDirect
SQLRowCount
SQLNumResultCols
SQLDescribeCol
SQLColAttributes
SQLBindCol
SQLFetch
SQLGetInfo
SQLGetTypeInfo
SQLNumParams
SQLParamOptions
SQLTables

7-2 UniVerse BASIC SQL Client Interface Guide

The syntax diagram for each function includes the function name and any appli-
cable input, output, and return variables. For example:

status = SQLAllocConnect (bci.env, connect.env)

You must call the SQLAllocEnv function before you use any other SQL Client
Interface function.

Variable Names
In the previous syntax diagram, status is a return variable that the function
returns upon completion. bci.env is an input variable whose value is provided by
a previous function call. connect.env is an output variable containing a value
output by the function. Names of return variables, input variables, and output
variables are user-defined.

Return Values
SQL Client Interface functions return a value to the status variable. Return values
are the following:

Exchanging data SQLColumns
SQLSpecialColumns
SQLStatistics

Processing errors ClearDiagnostics
GetDiagnostics
SetDiagnostics
SQLError

Disconnecting SQLFreeStmt
SQLCancel
SQLDisconnect
SQLFreeConnect
SQLFreeEnv

Return Value Meaning

0 SQL.SUCCESS Function completed successfully.

Table 7-1. Functions and Their Uses (Continued)

Category Functions

SQL Client Interface Functions 7-3

Error Codes
Any SQL Client Interface function call can generate errors. Use the SQLError
function after any other function call for which the returned status indicates an
error condition. For a list of SQL Client Interface error codes, see Appendix C.

1 SQL.SUCCESS.WITH.INFO Function completed successfully with a
possible nonfatal error. Your program
can call SQLError to get information
about the error.

−1 SQL.ERROR Function failed. Your program can call
SQLError to get information about the
error.

−2 SQL.INVALID.HANDLE Function failed because the environ-
ment, connection, or SQL statement
variable is invalid.

100 SQL.NO.DATA.FOUND All rows from the result set were fetched
(SQLFetch), or no error to report
(SQLError).

Return Value Meaning

ClearDiagnostics

7-4 UniVerse BASIC SQL Client Interface Guide

ClearDiagnostics clears diagnostics from the SQL diagnostics area.

Syntax
status = ClearDiagnostics ()

Return Values
0 Success

1 Success: no errors to clear

Description
Use ClearDiagnostics in a procedure to clear any diagnostics from the SQL diag-
nostics area associated with @HSTMT. This removes any errors set by the
procedure, allowing the procedure to return SQL.SUCCESS and a result to the
calling program. No warning or error text is returned.

GetDiagnostics

SQL Client Interface Functions 7-5

GetDiagnostics returns the current warning or error text from the SQL diagnos-
tics area.

Syntax
error = GetDiagnostics ()

Return Value
error The text of the pending error. If none is set, an empty string is

returned.

Description
Use GetDiagnostics in a procedure to return the current error text associated with
@HSTMT. This text is the same as what would be returned to the output variable
error by SQLError. The error text is removed from the SQL diagnostics area.

When an SQL statement that uses @HSTMT returns anything other than
SQL.SUCCESS, the diagnostic information is associated with @HSTMT. This
information comprises the SQLSTATE, the native error number, and the warning
or error text.

You can use SQLError and GetDiagnostics to examine and clear this information.
If multiple diagnostics are available, you need to call these functions continually
until you have examined and cleared all diagnostics.

SetDiagnostics

7-6 UniVerse BASIC SQL Client Interface Guide

SetDiagnostics adds an error to the SQL diagnostics area associated with
@HSTMT. This text is available to the SQLError and GetDiagnostics functions.

Syntax
status = SetDiagnostics (text)

Input Variable
text An expression that evaluates to the error message text.

Return Values
0 Success

1 Error: text empty or text contains field marks or value marks.

2 Error: diagnostics area full.

Description
A procedure can use SetDiagnostics to return an error message to the SQLExe-
cute or SQLExecDirect function that called the procedure.

On exiting an SQL procedure, if an error has been set in the SQL diagnostics area
associated with @HSTMT, the procedure returns SQL.ERROR to the SQLExecute
or SQLExecDirect function that called it. The caller can then invoke SQLError or
GetDiagnostics to determine the SQLSTATE, native error number, and the error
text. The error text is stored in the SQL diagnostics area associated with @HSTMT
and remains available until the next programmatic SQL statement is executed.

If SetDiagnostics sets multiple errors, they are returned to multiple calls to
SQLError or GetDiagnostics in the order in which they are set.

Example
In the following example, the main program calls an SQL procedure named Give-
PctRaise to give a 25% raise to employee 12345:

STATUS = SQLExecDirect (HSTMT, "call GivePctRaise(12345,25)")

SetDiagnostics

SQL Client Interface Functions 7-7

The procedure is a BASIC subroutine that limits raises to 20%:

SUBROUTINE GivePctRaise (EMPNUM, RAISEPCT)
IF RAISEPCT > 20 THEN SetDiagnostics ('Raise percent of

':RAISEPCT:' exceeds limit of 20.'); RETURN
.
.
.

The main program checks the status of the called procedure and reports any
errors:

IF STATUS # SQL.SUCCESS THEN GOSUB SHOW.ERR
.
.
.

SHOW.ERR
PRINT 'Error from server.'
PRINT 'Status is ':STATUS
STATUS = SQLError(SQL.NULL.HENV, SQL.NULL.HDBC, HSTMT,

SQLSTATE, NATIVE, TEXT)
PRINT 'SQLSTATE is ':SQLSTATE
PRINT 'Native error is ':NATIVE
PRINT 'Error text is: ':TEXT
RETURN

SQLAllocConnect

7-8 UniVerse BASIC SQL Client Interface Guide

SQLAllocConnect allocates and initializes a connection environment in an SQL
Client Interface environment.

Syntax
status = SQLAllocConnect (bci.env, connect.env)

Input Variable
bci.env SQL Client Interface environment variable returned in an

SQLAllocEnv call. For connections to a local UniVerse server, bci.env
can be @HENV.

Output Variable
connect.env Variable that represents the allocated connection environment.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
Use this function to create a connection environment to connect to a particular
data source. One SQL Client Interface environment can have several connection
environments, one for each data source. The function stores the internal represen-
tation of the connection environment in the connect.env variable.

BASIC programs running locally on a UniVerse server (localuv) can use the @vari-
able @HDBC to refer directly to the connection environment. They do not need to
allocate one.

Note: Use the connection environment variable only in SQL Client Interface calls
that require it. Using it improperly can cause a run-time error and break
communication with the data source.

SQLAllocEnv

SQL Client Interface Functions 7-9

SQLAllocEnv creates an SQL Client Interface environment in which to execute
SQL Client Interface calls.

Syntax
status = SQLAllocEnv (bci.env)

Output Variable
bci.env Variable that represents the allocated SQL Client Interface

environment.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

Description
Use this function to allocate memory for an SQL Client Interface environment.
The function stores the address in the bci.env variable. SQLAllocEnv must be the
first SQL Client Interface call issued in any application.

You can allocate more than one SQL Client Interface environment.

BASIC programs running locally on a UniVerse server (localuv) can use the @vari-
able @HENV to refer directly to the SQL Client Interface environment. They do
not need to allocate one.

Note: Use the SQL Client Interface environment variable only in SQL Client
Interface calls that require it. Using it in any other context causes a run-
time error or breaks communication with the data source.

SQLAllocStmt

7-10 UniVerse BASIC SQL Client Interface Guide

SQLAllocStmt creates an SQL statement environment in which to execute SQL
statements.

Syntax
status = SQLAllocStmt (connect.env, statement.env)

Input Variable
connect.env Connection environment used in SQLAllocConnect and

SQLConnect calls. For connections to a local UniVerse server,
connect.env can be @HDBC. If you have not established a connec-
tion to the data source using connect.env, an error is returned to the
application.

Output Variable
statement.env Variable that represents an SQL statement environment.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
Use this function to allocate memory for an SQL statement environment.

BASIC programs running locally on a UniVerse server (localuv) can use the @vari-
able @HSTMT to refer directly to the SQL statement environment. They do not
need to allocate one.

Note: Use the SQL statement environment variable only in SQL Client Interface
calls that require it. Using it in any other context causes a run-time error or
breaks communication with the data source.

SQLBindCol

SQL Client Interface Functions 7-11

SQLBindCol tells the system where to return column results when an SQLFetch
call is issued to retrieve the next row of data.

Syntax
status = SQLBindCol (statement.env, col#, data.type, column)

Input Variables
statement.env SQL statement environment of the executed SQL statement. For

connections to a local UniVerse server, statement.env can be
@HSTMT.

col# Column number of result data, starting at 1. This value must be
from 1 to the number of columns returned in an operation.

data.type BASIC data type into which to convert the incoming data. Possible
values are the following:

SQL.B.CHAR Character string data.

SQL.B.BINARY Bit string (raw) data.

SQL.B.NUMBER Numeric data (integer or double).

SQL.B.DEFAULT SQL data type determines the BASIC
data type. For information about data
conversion, see Appendix A, “Data
Conversion.”

SQL.B.INTDATE UniVerse date in internal format.

SQL.B.INTTIME UniVerse time in internal format.

column Variable that will contain column results obtained with SQLFetch.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

SQLBindCol

7-12 UniVerse BASIC SQL Client Interface Guide

Description
Use this function to tell the SQL Client Interface where to return the results of an
SQLFetch call. SQLBindCol defines the name of the variable (column) to contain
column results retrieved by SQLFetch, and specifies the data conversion
(data.type) on the fetched data. SQLBindCol has no effect until SQLFetch is used.

Normally you call SQLBindCol once for each column of data in the result set.
When SQLFetch is issued, data is moved from the result set at the data source
and put into the variables specified in the SQLBindCol call, overwriting existing
variable contents.

Data is converted from the SQL data type at the data source to the BASIC data
type requested by the SQLBindCol call, if possible. If data cannot be converted to
data.type, an error occurs. For information about data conversion types, see
Appendix A, “Data Conversion.”

Values are returned only for bound columns. Unbound columns are ignored and
are not accessible. For example, if a SELECT command returns three columns, but
SQLBindCol was called for only two columns, data from the third column is not
accessible to your program. If you bind more variables than there are columns in
the result set, an error is returned. If you bind no columns and an SQLFetch is
issued, the cursor advances to the next row of results.

You need not use SQLBindCol with SQL statements that do not produce result
sets.

UniVerse Data Sources. When multivalued data is fetched from a UniVerse data
source, it is stored in the bound column as a dynamic array. You can use the
SQL.COLUMN.MULTIVALUED parameter of the SQLColAttributes function to
determine whether the column is defined as multivalued or single-valued. You
can then use BASIC dynamic array functions to process the data.

Note: You cannot fetch raw multivalued data (that is, data from a column whose
data type is SQL.BINARY, SQL.VARBINARY, or SQL.LONGVARBINARY)
from a UniVerse data source unless you use dynamic normalization (see
UniVerse SQL Reference).

SQLBindParameter

SQL Client Interface Functions 7-13

SQLBindParameter specifies where to find values for input parameter markers
when an SQLExecute or SQLExecDirect call is issued. For output parameter
markers, SQLBindParameter specifies where to find the return value of a called
procedure.

Syntax
status = SQLBindParameter (statement.env, mrk#, data.type, sql.type, prec, scale,

param [,param.type])

Input Variables
statement.env SQL statement environment associated with an SQL statement.

For connections to a local UniVerse server, statement.env can be
@HSTMT.

mrk# Number of the parameter marker in the SQL statement this call
refers to. Parameter markers in the SQL statement are numbered
left to right starting at 1.

data.type BASIC data type to bind to the parameter. data.type must be one of
the following:

SQL.B.BASIC Use with any sql.type.

SQL.B.BINARY Use only when sql.type is SQL.BINARY,
SQL.VARBINARY, or
SQL.LONGVARBINARY.

SQL.B.INTDATE Use only when sql.type is SQL.DATE.

SQL.B.INTTIME Use only when sql.type is SQL.TIME.

sql.type SQL data type to which the BASIC variable is converted. For infor-
mation about converting BASIC data to SQL data types, see
“Converting BASIC Data to SQL Data” on page A-5.

prec Precision of the parameter, representing the width of the param-
eter. If prec is 0, default values are used based on the extended
parameter settings in the uvodbc.config file (see Appendix D).

scale Scale of the parameter, used only when sql.type is SQL.DECIMAL
or SQL.NUMERIC.

SQLBindParameter

7-14 UniVerse BASIC SQL Client Interface Guide

param Variable that contains the data to use when SQLExecute or
SQLExecDirect is called.

param.type Type of parameter. param.type can be one of the following:

SQL.PARAM.INPUT Use for parameters in an SQL
statement that does not call a
procedure, or for input parame-
ters in a procedure call.

SQL.PARAM.OUTPUT Use for parameters that mark the
output parameter in a
procedure.

SQL.PARAM.INPUT.OUTPUT Use for an input/output param-
eter in a procedure.

If you do not specify param.type, SQL.PARAM.INPUT is used.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
Parameter markers are placeholders in SQL statements. Input parameter markers
let a program send user-defined values with the SQL statement when an SQLExe-
cute or SQLExecDirect call is executed repeatedly. Output parameter markers
receive values returned from a called procedure. The placeholder character is
? (question mark). For more information about parameter markers, see “Using
Parameter Markers in SQL Statements” on page 4-6.

SQLBindParameter tells the system where to find the variables to substitute for
parameter markers in the SQL statement and how to convert the data before
sending it to the data source. You need to do only one SQLBindParameter for
each parameter marker in the SQL statement, no matter how many times the
statement is to be executed.

For example, consider the following SQL statement:

INSERT INTO T1 VALUES (?,?,?);

SQLBindParameter

SQL Client Interface Functions 7-15

If you want to load 1000 rows, you need issue only three SQLBindParameter
calls, one for each question mark.

Normally you specify data.type as SQL.B.BASIC. If you specify sql.type as
SQL.DATE, however, you can specify data.type as SQL.B.INTDATE; if you specify
sql.type as SQL.TIME, you can specify data.type as SQL.B.INTTIME. If you specify
sql.type as SQL.BINARY, SQL.VARBINARY, or SQL.LONGVARBINARY, you can
specify data.type as SQL.B.BINARY.

If you use SQL.B.INTDATE, the SQL Client Interface assumes the program vari-
able holds a date in UniVerse internal date format and uses the DATEFORM
conversion string to convert the internal date to an external format as required by
the data source. To set or change the DATEFORM conversion string, see the
SQLSetConnectOption function. For details about date and time conversions, see
Appendix A.

If you specify sql.type as SQL.TIME and data.type as SQL.B.INTTIME, the SQL
Client Interface assumes the program variable holds a time in UniVerse internal
time format and does not convert the data.

SQLBindParameter uses the value of prec only for the following SQL data types:

SQL.CHAR
SQL.VARCHAR
SQL.LONGVARCHAR
SQL.WCHAR
SQL.WVARCHAR
SQL.WLONGVARCHAR
SQL.BINARY
SQL.VARBINARY
SQL.LONGVARBINARY
SQL.NUMERIC
SQL.DECIMAL

For all other data types, the extended parameters DBLPREC, FLOATPREC, and
INTPREC determine the maximum length for strings representing double-preci-
sion numbers, floating-point numbers, and integers.

UniVerse Data Sources. The prec and scale parameters are not used if you are
connected to a UniVerse data source.

SQLCancel

7-16 UniVerse BASIC SQL Client Interface Guide

SQLCancel cancels the current SQL statement associated with an SQL statement
environment and discards any pending results.

Syntax
status = SQLCancel (statement.env)

Input Variable
statement.env SQL statement environment. For connections to a local UniVerse

server, statement.env can be @HSTMT.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
This function is equivalent to the SQLFreeStmt call with the SQL.CLOSE option.
It closes any open cursor associated with the SQL statement environment and
discards pending results at the data source.

It is good practice to issue SQLCancel when all results have been read from the
data source, even if the SQL statement environment will not be reused immedi-
ately for another SQL statement. Issuing SQLCancel frees any locks that may be
held at the data source.

SQLColAttributes

SQL Client Interface Functions 7-17

SQLColAttributes returns information about the columns available in a result set
produced by an SQL SELECT statement.

Syntax
status = SQLColAttributes (statement.env, col#, col.attribute, text.var, num.var)

Input Variables
statement.env SQL statement environment of the executed SQL statement. For

connections to a local UniVerse server, statement.env can be
@HSTMT.

col# Column number to describe, starting with 1.

col.attribute Attribute of the column that needs information. col.attribute values
are listed in Table 7-2 and Table 7-3. These values are defined in
the ODBC.H file. Appendix E lists the contents of the ODBC.H
file.

Output Variables
text.var Contains column information for attributes returning text data.

num.var Contains column information for attributes returning numeric data.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
Use this function to get information about a column. SQLColAttributes returns
the specific information requested by the value of col.attribute.

Some DBMSs (such as SYBASE) do not make column information available until
after the SQL statement is executed. In such cases, issuing an SQLColAttributes
call before executing the statement produces an error.

SQLColAttributes

7-18 UniVerse BASIC SQL Client Interface Guide

The SQL.SUCCESS.WITH.INFO return occurs when you issue the call for a
column that contains an unsupported data type or when text.var is truncated. The
SQL data type returned is SQL.BINARY (−2).

Table 7-2 lists the column attributes you can use with both UniVerse and ODBC
databases.

Table 7-2. Column Attributes

Column Attribute Output Description

SQL.COLUMN.AUTO.INCREMENT num.var 1 TRUE if the column values are incre-
mented automatically.

0 FALSE if the column values are not
incremented automatically.

SQL.COLUMN.CASE.SENSITIVE num.var 1 TRUE for character data.
0 FALSE for all other data.

SQL.COLUMN.COUNT num.var Number of columns in result set. The col#
argument must be a valid column number
in the result set.

SQL.COLUMN.DISPLAY.SIZE num.var Maximum number of characters required
to display data from the column.

SQL.COLUMN.LABEL text.var Column heading.

SQL.COLUMN.LENGTH num.var Number of bytes transferred by an
SQLFetch call.

SQL.COLUMN.NAME text.var Name of specified column.

SQL.COLUMN.NULLABLE num.var Column can contain null values. Can
return one of the following:
0 SQL.NO.NULLS
1 SQL.NULLABLE
2 SQL.NULLABLE.UNKNOWN

SQL.COLUMN.PRECISION num.var Column’s precision.

SQL.COLUMN.SCALE num.var Column’s scale.

SQL.COLUMN.SEARCHABLE num.var Always returns 3, SQL.SEARCHABLE.

SQL.COLUMN.TABLE.NAME text.var Name of the table to which the column
belongs. If the column is an expression, an
empty string is returned.

SQLColAttributes

SQL Client Interface Functions 7-19

For SQL.NUMERIC and SQL.DECIMAL data types, INFORMIX-OnLine is the
only DBMS that can accurately report precision and scale. For other databases,
scale is −1 and precision is the maximum precision for a double precision number.

If you are connected to an ODBC database, SQL.COLUMN.NULLABLE always
returns SQL.NULLABLE.UNKNOWN.

UniVerse Data Sources. Table 7-3 lists the column attributes you can use only
with UniVerse databases.

SQL.COLUMN.TYPE num.var Number representing the SQL type of this
column. See Appendix E, “The ODBC.H
File,” for data type definitions. See
Appendix A, “Data Conversion,” for a list
of data types.

SQL.COLUMN.TYPE.NAME text.var Data type name for column, specific to the
data source.

SQL.COLUMN.UNSIGNED num.var 1 TRUE for nonnumeric data types.
0 FALSE for all other data types.

SQL.COLUMN.UPDATABLE num.var As of Release 9, any expressions or
computed columns return
SQL.ATTR.READONLY, and stored data
columns return SQL.ATTR.WRITE.

Table 7-3. UniVerse Column Attributes

Column Attribute Output Description

SQL.COLUMN.CONVERSION text.var UniVerse conversion code.

SQL.COLUMN.FORMAT text.var UniVerse format code.

SQL.COLUMN.MULTIVALUED num.var 1 TRUE if column is multivalued.
0 FALSE if column is single-valued.

SQL.COLUMN.PRINT.RESULT num.var 1 TRUE if column is a one-column PRINT
result set from a called procedure.

0 FALSE if column contains no PRINT
output from a called procedure.

See “Processing UniVerse Procedure Results”
on page 5-2 for details.

Table 7-2. Column Attributes (Continued)

Column Attribute Output Description

SQLColAttributes

7-20 UniVerse BASIC SQL Client Interface Guide

When you are connected to an ODBC data source, calling SQLColAttributes with
one of the UniVerse-only column attributes returns a status of SQL.ERROR with
SQLSTATE set to S1091.

ODBC Data Sources. Table 7-4 lists the column attributes you can use only with
ODBC databases.

Table 7-4. ODBC Column Attributes

Column Attribute Output Description

SQL.COLUMN.MONEY num.var 1 TRUE if column is money data type.
0 FALSE if column is not money data
type.

SQL.COLUMN.OWNER.NAME text.var Owner of the table containing the column.

SQL.COLUMN.QUALIFIER.NAME text.var Qualifier of the table containing the
column.

SQLColumns

SQL Client Interface Functions 7-21

SQLColumns returns a result set listing the columns matching the search
patterns.

Syntax
status = SQLColumns (statement.env, schema, owner, tablename, columnname)

Input Variables
statement.env SQL statement environment.

schema Schema name search pattern.

owner Table owner number search pattern.

tablename Table name search pattern.

columnname Column name search pattern.

Description
This function returns a result set in statement.env as a cursor of 12 columns
describing those columns found by the search pattern (see SQLTables). As with
SQLTables, the search is done on the SQL catalog. This is a standard result set
that can be accessed with SQLFetch. The ability to obtain descriptions of columns
does not imply that a user has any privileges on those columns.

The result set contains 12 columns:

Column Name Data Type

TABLE.SCHEMA VARCHAR(128)

OWNER INTEGER

TABLE.NAME VARCHAR(128)

COLUMN.NAME VARCHAR(128)

DATA.TYPE SMALLINT

TYPE.NAME VARCHAR(128)

NUMERIC.PRECISION INTEGER

CHAR.MAX.LENGTH INTEGER

NUMERIC.SCALE SMALLINT

SQLColumns

7-22 UniVerse BASIC SQL Client Interface Guide

The application is responsible for binding variables for the output columns and
fetching the results using SQLFetch.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

–1 SQL.ERROR

–2 SQL.INVALID.HANDLE

SQLSTATE Values

NUMERIC.PREC.RADIX SMALLINT

NULLABLE SMALLINT

REMARKS VARCHAR(254)

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1008 Cancelled. Execution of the statement was stopped by an SQLCancel
call.

S1010 Function sequence error. The statement.env specified is currently
executing an SQL statement.

S1C00 The table owner field was not numeric.

24000 Invalid cursor state. Results are still pending from the previous SQL
statement. Use SQLCancel to clear the results.

42000 Syntax error or access violation. This can be caused by a variety of
reasons. The native error code returned by the SQLError call indicates
the specific UniVerse error that occurred.

Column Name Data Type

SQLConnect

SQL Client Interface Functions 7-23

SQLConnect connects to a data source.

Syntax
status = SQLConnect (connect.env, data.source, logon1, logon2)

Input Variables
connect.env Connection environment assigned in a previous SQLAllocConnect.

For connections to a local UniVerse server, connect.env can be @HDBC.

data.source Data source name. For UniVerse data sources, this is the name of a
valid data source defined in the uvodbc.config file. For ODBC data
sources, this is the name of a data source specified by the data source
management program you are using.

logon1 For a local UniVerse server, logon1 is ignored.

For a remote UniVerse server, logon1 is the name of the UniVerse
account to connect to. The name can be the full pathname of the
account directory, a schema name, or an account name as defined in
the UV.ACCOUNT file.

For ODBC data sources, this is typically the user name for the remote
database or operating system.

logon2 For local and remote UniVerse servers, logon2 is ignored. For ODBC
data sources, this is typically the password for the remote database or
operating system.

For the specific information required for logon1 and logon2 when connecting to
ODBC data sources, see the configuration for the specific driver used.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

SQLConnect

7-24 UniVerse BASIC SQL Client Interface Guide

Description
Use this function to connect to the data source specified by data.source. UniVerse
data sources must be defined in the configuration file. Use the logon1 and logon2
parameters to log on to the DBMS specified by data.source.

You cannot use SQLConnect within a transaction. An SQLConnect call issued
within a transaction returns SQL.ERROR, and sets SQLSTATE to 25000, indicating
that the SQLConnect function is illegal within a transaction.

As of Release 9.4.1, if you are connecting to a UniVerse server running with NLS
enabled, you can use the SQLSetConnectOption call to specify the NLS locale
information (SQL_NLSLOCALE, etc.).

Note: Certain combinations of clients and servers may not be able to transfer
data reliably because of a mismatch in the character mapping, locale
settings, or both at the client end. See “Connecting to a UniVerse Server
with NLS Enabled” on page 4-4 for more information.

A connection is established when the data source validates the user name and
authorization.

Note: When connecting to a remote UniVerse server, before issuing SQLCon-
nect, use SQLSetConnectOption calls to specify the user name and
password for logging on to the server’s operating system. If you do not do
this, the connection fails.

If you are connecting to a local UniVerse server (localuv), you connect
directly to the UniVerse schema or account you are currently logged in to.
You need not use SQLSetConnectOption to specify the user name and
password.

SQLDescribeCol

SQL Client Interface Functions 7-25

SQLDescribeCol returns information about one column of a result set produced
by an SQL SELECT statement.

Syntax
status = SQLDescribeCol (statement.env, col#, col.name, sql.type, prec, scale, null)

Input Variables
statement.env SQL statement environment of the executed SQL statement. For

connections to a local UniVerse server, statement.env can be
@HSTMT.

col# Column number to describe, starting with 1.

Output Variables
col.name Column name.

sql.type SQL data type of the column, a numeric code defined in the ODBC.H
file. See Appendix E for more information.

prec Precision of the column, or –1 if precision is unknown.

scale Scale of the column, or –1 if scale is unknown.

null One of the following:

0 SQL.NO.NULLS: field cannot contain NULL.

1 SQL.NULLABLE: field can contain NULL.

2 SQL.NULLABLE.UNKNOWN: not known whether field can
contain NULL.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

SQLDescribeCol

7-26 UniVerse BASIC SQL Client Interface Guide

Description
Use this function to get information about the column described by col#.

The SQL.SUCCESS.WITH.INFO return occurs when you issue the call for a
column that contains an unsupported data type, or if col.name is truncated. The
SQL data type returned is SQL.BINARY (−2).

SQLDisconnect

SQL Client Interface Functions 7-27

SQLDisconnect disconnects a connection environment from a data source.

Syntax
status = SQLDisconnect (connect.env)

Input Variable
connect.env Connection environment.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
You cannot use SQLDisconnect within a transaction. An SQLDisconnect call
issued within a transaction returns SQL.ERROR, and sets SQLSTATE to 25000.
You must commit or roll back active transactions before disconnecting, and you
must be in autocommit mode. If there is no active transaction, SQLDisconnect
frees all SQL statement environments owned by this connection before
disconnecting.

SQLDisconnect returns SQL.SUCCESS.WITH.INFO if an error occurs but the
disconnect succeeds.

SQLError

7-28 UniVerse BASIC SQL Client Interface Guide

SQLError returns error status information about one of the three environments
you use.

Syntax
status = SQLError (bci.env, connect.env, statement.env, sqlstate, dbms.code, error)

Input Variables
bci.env SQL Client Interface environment or the constant

SQL.NULL.HENV. For connections to a local UniVerse server,
bci.env can be @HENV.

connect.env Connection environment or the constant SQL.NULL.HDBC. For
connections to a local UniVerse server, connect.env can be @HDBC.

statement.env SQL statement environment or the constant SQL.NULL.HSTMT.
For connections to a local UniVerse server, statement.env can be
@HSTMT.

Output Variables
sqlstate SQLSTATE code. This code describes the SQL Client Interface Client

error associated with the environment passed. sqlstate is always a five-
character string. For a list of SQLSTATE codes and their meanings, see
Appendix C.

dbms.code Error code specific to the data source. dbms.code contains an integer
error code from the data source. If dbms.code is 0, the error was
detected by the SQL Client Interface. For the meanings of specific error
codes, see the documentation provided for the data source.

error Text describing the error in more detail.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

100 SQL.NO.DATA.FOUND

SQLError

SQL Client Interface Functions 7-29

Description
Use SQLError when a function returns a status value other than SQL.SUCCESS or
SQL.INVALID.HANDLE. SQLError returns a value in sqlstate when the SQL
Client Interface detects an error condition. The dbms.code field contains informa-
tion from the data source that identifies the error.

Each environment type maintains its own error status. SQLError returns errors
for the rightmost nonnull environment. For example, to get errors associated with
a connection environment, specify input variables and constants in the following
order:

bci.env, connect.env, SQL.NULL.HSTMT

To get errors associated with a particular SQL statement environment, specify the
following:

bci.env, connect.env, statement.env

If all arguments are null, SQLError returns a status of SQL.NO.DATA.FOUND
and sets SQLSTATE to 00000.

Since multiple errors can be returned for a variable, you should call SQLError
until it returns a status of SQL.NO.DATA.FOUND. This ensures that all errors are
reported.

UniVerse Data Sources. When a program is connected to a UniVerse server,
errors can be detected by the SQL Client Interface, by the UniVerse RPC middle-
ware, or by the UniVerse server. When the error is returned, the source of the error
is indicated by bracketed items in the error output variable, as shown in the
following examples.

Errors detected by the SQL Client Interface software:

[Ardent][SQL Client] An illegal configuration option was found

For information about errors detected by the SQL Client Interface, see
Appendix C, “Error Codes.”

Errors detected by the UniVerse RPC middleware:

[Ardent][SQL Client][RPC] Connect error, subcode: . . .

Errors detected by the UniVerse server:

[Ardent][SQL Client][UNIVERSE] Universe/SQL: Table ORDERS does
not exist.

SQLError

7-30 UniVerse BASIC SQL Client Interface Guide

ODBC Data Sources. When a program is connected to an ODBC server, errors
can be detected by the SQL Client Interface, by the ODBC driver, or by the data
source. When the error is returned, the source of the error is indicated by brack-
eted items in the error output variable, as shown in the following examples.

Errors detected by the SQL Client Interface software:

[Ardent][SQL Client] An illegal configuration option was found

For information about errors detected by the SQL Client Interface, see
Appendix C, “Error Codes.”

Errors detected by the ODBC driver:

SQLConnect error: Status = -1 SQLState = S1000 Natcode = 9352

[ODBC] [INTERSOLV][ODBC Oracle driver][Oracle]ORA-09352: Windows 32-bit

Two-Task driver unable to spawn new ORACLE task

For information about errors detected by the ODBC driver manager, see the
Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide.

Errors detected by the data source:

[Ardent][SQL Client][INFORMIX] Database not found or no system
permissions.

For information about errors detected by the data source, see the documentation
provided for the DBMS running on the data source.

SQLExecDirect

SQL Client Interface Functions 7-31

SQLExecDirect accepts an SQL statement or procedure call and delivers it to the
data source for execution. It uses the current values of any SQL statement param-
eter markers.

Syntax
status = SQLExecDirect (statement.env, statement)

Input Variables
statement.env SQL statement environment from a previous SQLAllocStmt. For

connections to a local UniVerse server, statement.env can be
@HSTMT.

statement Either an SQL statement or a call to an SQL procedure, to be
executed at the data source. If you are connected to a UniVerse
server, it treats the SQL statement case-sensitively; all keywords
must be in uppercase letters. If you are connected to an ODBC
data source, it may treat identifiers and keywords in the SQL
statement case-sensitively.

To call an SQL procedure, use one of the following syntaxes:

[{] CALL procedure [([parameter [, parameter] …])] [}]
CALL procedure [argument [argument]…]

If you are connected to an ODBC data source, use the first syntax
and enclose the entire call statement in braces.

procedure Name of the procedure. If the procedure name
contains characters other than alphabetic or numeric,
enclose the name in double quotation marks. To
embed a single double quotation mark in the proce-
dure name, use two consecutive double quotation
marks.

parameter Either a literal value or a parameter marker that
marks where to insert values to send to or receive
from the data source. Programmatic SQL uses a ?
(question mark) as a parameter marker.

SQLExecDirect

7-32 UniVerse BASIC SQL Client Interface Guide

Use parameters only if the procedure is a subroutine.
The number and order of parameters must corre-
spond to the number and order of the subroutine
arguments. For an ODBC data source, parameters
should be of the same data type as the procedure
requires.

argument Any valid keyword, literal, or other token you can use
in a UniVerse command line.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
SQLExecDirect differs from SQLExecute in that it does not require a call to
SQLPrepare. SQLExecDirect prepares the SQL statement or procedure call
implicitly. Use SQLExecDirect when you do not need to execute the same SQL
statement or procedure repeatedly.

You can use parameter markers in the SQL statement or procedure call as long as
you have resolved each marker with an SQLBindParameter call. For information
about parameter markers, see “Using Parameter Markers in SQL Statements” on
page 4-6.

After an SQLExecDirect call you can use SQLNumResultCols, SQLDe-
scribeCol, SQLRowCount, or SQLColAttributes to get information about the
resulting columns. You can use SQLNumResultCols to determine if the SQL
statement or procedure call created a result set.

If the executed SQL statement or procedure produces a set of results, you must
use an SQLFreeStmt call with the SQL.CLOSE option before you execute another
SQL statement or procedure call using the same SQL statement environment. The
SQL.CLOSE option cancels any pending results still waiting at the data source.

Your application programs should not try to issue transaction control statements
directly to the data source (for instance, by issuing a COMMIT statement with

SQLExecDirect

SQL Client Interface Functions 7-33

SQLExecDirect or SQLPrepare). Programs should use only BASIC transaction
control statements. The SQL Client Interface issues the correct combination of
transaction control statements and middleware transaction control function calls
that are appropriate for the DBMS you are using. Trying to use SQLExecDirect to
execute explicit transaction control statements on ODBC data sources can cause
unexpected results and errors.

When SQLExecDirect calls a procedure, it does not begin a transaction. If a trans-
action is active when a procedure is called, the current transaction nesting level is
maintained.

UniVerse Data Sources. If your application is connected to a UniVerse data
source, it must execute data definition statements (CREATE SCHEMA, CREATE
TABLE, CREATE VIEW, CREATE INDEX, ALTER TABLE, DROP SCHEMA,
DROP TABLE, DROP VIEW, DROP INDEX, GRANT, and REVOKE) outside a
transaction (at transaction level 0). If a DDL statement is executed within a trans-
action, SQLExecDirect returns SQL.ERROR and sets SQLSTATE to S1000,
indicating that DDL statements are illegal in a transaction.

SQL statements can refer to UniVerse files as well as to SQL tables.

ODBC Data Sources. If your application is connected to an ODBC data source, it
must issue SQLExecDirect calls either outside a transaction (transaction level 0)
or at transaction level 1. An SQLExecDirect call issued within a nested transac-
tion returns SQL.ERROR and sets SQLSTATE to IM983, indicating that the call is
not allowed at the current nesting level.

If you execute a stored procedure or enter a command batch with multiple
SELECT statements, the results of only the first SELECT statement are returned.

SQLExecute

7-34 UniVerse BASIC SQL Client Interface Guide

SQLExecute tells the data source to execute a prepared SQL statement or a called
procedure, using the current values of any parameter markers used in the state-
ment. Using SQLExecute with an SQLBindParameter call is the most efficient
way to execute a statement repeatedly, since the statement does not have to be
parsed by the data source each time it is issued.

Syntax
status = SQLExecute (statement.env)

Input Variable
statement.env SQL statement environment associated with a prepared SQL

statement. For connections to a local UniVerse server, state-
ment.env can be @HSTMT.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
Use this function to repeatedly execute an SQL statement, using different values
for parameter markers. You must use an SQLPrepare call to prepare the SQL
statement before you can use SQLExecute. If the SQL statement specified in the
SQLPrepare call contains parameter markers, you must also issue an SQLBind-
Parameter call for each marker in the SQL statement before you use SQLExecute.
After you load the parameter marker variables with data to send to the data
source, you can issue the SQLExecute call. By setting new values in the parameter
marker variables and calling SQLExecute, new data values are sent to the data
source and the SQL statement is executed using those values.

If the SQL statement uses parameter markers, SQLExecute performs any data
conversions required by the SQLBindParameter call for the parameter markers.
See Appendix A, “Data Conversion,” for details.

SQLExecute

SQL Client Interface Functions 7-35

If the SQL statement executed produces a set of results, you must use an
SQLFreeStmt call with the SQL.CLOSE option before you execute another SQL
statement using the same SQL statement environment. The SQL.CLOSE option
cancels any pending results still waiting at the data source.

Your application programs should not try to issue transaction control statements
directly to the data source (for instance, by issuing a COMMIT statement with
SQLExecDirect or SQLPrepare). Programs should use only BASIC transaction
control statements. The SQL Client Interface issues the correct combination of
transaction control statements and middleware transaction control function calls
that are appropriate for the DBMS you are using. Trying to use SQLExecute to
execute explicit transaction control statements on ODBC data sources can cause
unexpected results and errors.

UniVerse Data Sources. If your application is connected to a UniVerse data
source, it must execute data definition statements (CREATE SCHEMA, CREATE
TABLE, CREATE VIEW, CREATE INDEX, ALTER TABLE, DROP SCHEMA,
DROP TABLE, DROP VIEW, DROP INDEX, GRANT, and REVOKE) outside a
transaction (at transaction level 0). If a DDL statement is executed within a trans-
action, SQLExecute returns SQL.ERROR and sets SQLSTATE to S1000, indicating
that DDL statements are illegal in a transaction.

ODBC Data Sources. If your application is connecting to an ODBC data source,
it must issue SQLExecute calls either outside a transaction (transaction level 0) or
at transaction level 1. An SQLExecute call issued within a nested transaction
returns SQL.ERROR and SQLSTATE is set to IM983, indicating that the call is not
allowed at the current nesting level.

SQLFetch

7-36 UniVerse BASIC SQL Client Interface Guide

SQLFetch returns the next row of data from the result set pending at the data
source.

Syntax
status = SQLFetch (statement.env)

Input Variable
statement.env SQL statement environment of the executed SQL statement. For

connections to a local UniVerse server, statement.env can be
@HSTMT.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

1 SQL.SUCCESS.WITH.INFO

100 SQL.NO.DATA.FOUND

Description
Use this function to retrieve the next row’s column values from the result set at
the data source and put them into the variables specified with SQLBindCol.
SQLFetch performs any required data conversions (see Appendix A, “Data
Conversion,” for details).

SQLFetch returns SQL.SUCCESS.WITH.INFO if numeric data is truncated or
rounded when converting SQL values to UniVerse values.

SQLFetch logically advances the cursor to the next row in the result set. Unbound
columns are ignored and are not available to the application. When no more rows
are available, SQLFetch returns a status of 100.

Your application must issue an SQLFetch call at the same transaction nesting
level (or deeper) as the corresponding SQLExecDirect or SQLExecute call. Also,
an SQLFetch call must be executed at the same transaction isolation level as the
SELECT statement that generates the data. If it does not, SQLFetch returns
SQL.ERROR and sets SQLSTATE to S1000.

Use SQLFetch only when a result set is pending at the data source.

SQLFreeConnect

SQL Client Interface Functions 7-37

SQLFreeConnect releases a connection environment and its resources.

Syntax
status = SQLFreeConnect (connect.env)

Input Variable
connect.env Connection environment.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
You must use SQLDisconnect to disconnect the connection environment from the
data source before you release the connection environment with SQLFreeCon-
nect, otherwise an error is returned.

SQLFreeEnv

7-38 UniVerse BASIC SQL Client Interface Guide

SQLFreeEnv releases an SQL Client Interface environment and its resources.

Syntax
status = SQLFreeEnv (bci.env)

Input Variable
bci.env SQL Client Interface environment.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
You must use SQLFreeConnect to release all connection environments attached
to the SQL Client Interface environment before you release the SQL Client Inter-
face environment with SQLFreeEnv, otherwise an error is returned.

SQLFreeStmt

SQL Client Interface Functions 7-39

SQLFreeStmt frees some or all resources associated with an SQL statement
environment.

Syntax
status = SQLFreeStmt (statement.env, option)

Input Variables
statement.env SQL statement environment. For connections to a local UniVerse

server, statement.env can be @HSTMT.

option is one of the following:

SQL.CLOSE Closes any open cursor associated with the SQL state-
ment environment and discards pending results at the
data source. Using the SQL.CLOSE option cancels the
current query. All parameter markers and columns
remain bound to the variables specified in the
SQLBindCol and SQLBindParameter calls.

SQL.UNBIND Releases all bound column variables defined in
SQLBindCol for this SQL statement environment.

SQL.RESET.PARAMS Releases all parameter marker variables set by SQLBind-
Parameter for this SQL statement environment.

SQL.DROP Releases the SQL statement environment. This option
terminates all access to the SQL statement environment.
SQL.DROP also closes cursors, discards pending results,
unbinds columns, and resets parameter marker variables.

Options are defined in the ODBC.H file. See Appendix E for more information.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

SQLFreeStmt

7-40 UniVerse BASIC SQL Client Interface Guide

Description
Use this function at the end of processing to free resources used by the SQL state-
ment environment.

If your program uses the same SQL statement environment to execute different
SQL statements, use SQLFreeStmt with the SQL.DROP option, then use
SQLAllocStmt to reallocate a new SQL statement environment. This unbinds all
bound columns and resets all parameter marker variables.

It is good practice to issue SQLFreeStmt with the SQL.CLOSE option when all
results have been read from the data source, even if the SQL statement environ-
ment will not be reused immediately for another SQL statement. Issuing
SQLFreeStmt with the SQL.CLOSE option frees any locks that may be held at the
data source.

SQLGetInfo

SQL Client Interface Functions 7-41

SQLGetInfo returns general information about the ODBC driver and the data
source.

Syntax
status = SQLGetInfo (connect.env, info.type, info.value)

Input Variables
connect.env Connection environment.

info.type The specific information requested. For a list of values, see
Table 7-5 and Table 7-6.

Output Variables
info.value The information returned by SQLGetInfo.

Description
This function supports all of the possible requests for information defined in the
ODBC 2.0 specification. The #defines for info.type are contained in the ODBC.H
include file. In addition, SQLGetInfo also returns NLS information from
UniVerse data sources.

ODBC info.type Values. Table 7-5 lists the valid ODBC values for info.type. For
more detailed information about information types, see Microsoft ODBC 2.0
Programmer’s Reference and SDK Guide.

Table 7-5. ODBC info.type Values

Driver Information

SQL.ACTIVE.CONNECTIONS SQL.DRIVER.VER

SQL.ACTIVE.STATEMENTS SQL.FETCH.DIRECTION

SQL.DATA.SOURCE.NAME SQL.FILE.USAGE

SQL.DRIVER.HDBC SQL.GETDATA.EXTENSIONS

SQL.DRIVER.HENV SQL.LOCK.TYPES

SQL.DRIVER.HLIB SQL.ODBC.API.CONFORMANCE

SQL.DRIVER.HSTMT SQL.ODBC.SAG.CLI.CONFORMANCE

SQL.DRIVER.NAME SQL.ODBC.VER

SQLGetInfo

7-42 UniVerse BASIC SQL Client Interface Guide

SQL.DRIVER.ODBC.VER SQL.POS.OPERATIONS

SQL.ROW.UPDATES SQL.SERVER.NAME

SQL.SEARCH.PATTERN.ESCAPE

DBMS Product Information

SQL.DATABASE.NAME SQL.DBMS.VER

SQL.DBMS.NAME

Data Source Information

SQL.ACCESSIBLE.PROCEDURES SQL.OWNER.TERM

SQL.ACCESSIBLE.TABLES SQL.PROCEDURE.TERM

SQL.BOOKMARK.PERSISTENCE SQL.QUALIFIER.TERM

SQL.CONCAT.NULL.BEHAVIOR SQL.SCROLL.CONCURRENCY

SQL.CURSOR.COMMIT.BEHAVIOR SQL.SCROLL.OPTIONS

SQL.DATA.SOURCE.READ.ONLY SQL.STATIC.SENSITIVITY

SQL.DEFAULT.TXN.ISOLATION SQL.TABLE.TERM

SQL.MULT.RESULT.SETS SQL.TXN.CAPABLE

SQL.MULTIPLE.ACTIVE.TXN SQL.TXN.ISOLATION.OPTION

SQL.NEED.LONG.DATA.LEN SQL.USER.NAME

SQL.NULL.COLLATION

Supported SQL

SQL.ALTER.TABLE SQL.ODBC.SQL.OPT.IEF

SQL.COLUMN.ALIAS SQL.ORDER.BY.COLUMNS.IN.SELECT

SQL.CORRELATION.NAME SQL.OUTER.JOINS

SQL.EXPRESSIONS.IN.ORDER.BY SQL.OWNER.USAGE

SQL.GROUP.BY SQL.POSITIONED.STATEMENTS

SQL.IDENTIFIER.CASE SQL.PROCEDURES

SQL.IDENTIFIER.QUOTE.CHAR SQL.QUALIFIER.LOCATION

SQL.KEYWORDS SQL.QUALIFIER.NAME.SEPARATOR

SQL.LIKE.ESCAPE.CLAUSE SQL.QUALIFIER.USAGE

SQL.NON.NULLABLE.COLUMNS SQL.QUOTED.IDENTIFIER.CASE

SQL.ODBC.SQL.CONFORMANCE SQL.SPECIAL.CHARACTERS

SQL.SUBQUERIES SQL.UNION

Table 7-5. ODBC info.type Values (Continued)

SQLGetInfo

SQL Client Interface Functions 7-43

SQL Limits

SQL.MAX.BINARY.LITERAL.LEN SQL.MAX.OWNER.NAME.LEN

SQL.MAX.CHAR.LITERAL.LEN SQL.MAX.PROCEDURE.NAME.LEN

SQL.MAX.COLUMN.NAME.LEN SQL.MAX.QUALIFIER.NAME.LEN

SQL.MAX.COLUMNS.IN.GROUP.BY SQL.MAX.ROW.SIZE

SQL.MAX.COLUMNS.IN.ORDER.BY SQL.MAX.ROW.SIZE.INCLUDES.LONG

SQL.MAX.COLUMNS.IN.INDEX SQL.MAX.STATEMENT.LEN

SQL.MAX.COLUMNS.IN.SELECT SQL.MAX.TABLE.NAME.LEN

SQL.MAX.COLUMNS.IN.TABLE SQL.MAX.TABLES.IN.SELECT

SQL.MAX.CURSOR.NAME.LEN SQL.MAX.USER.NAME.LEN

SQL.MAX.INDEX.SIZE

Scalar Function Information

SQL.CONVERT.FUNCTIONS SQL.TIMEDATE.ADD.INTERVALS

SQL.NUMERIC.FUNCTIONS SQL.TIMEDATE.DIFF.INTERVALS

SQL.STRING.FUNCTIONS SQL.TIMEDATE.FUNCTIONS

SQL.SYSTEM.FUNCTIONS

Conversion Information

SQL.CONVERT.BIGINT SQL.CONVERT.LONGVARCHAR

SQL.CONVERT.BINARY SQL.CONVERT.NUMERIC

SQL.CONVERT.BIT SQL.CONVERT.REAL

SQL.CONVERT.CHAR SQL.CONVERT.SMALLINT

SQL.CONVERT.DATE SQL.CONVERT.TIME

SQL.CONVERT.DECIMAL SQL.CONVERT.TIMESTAMP

SQL.CONVERT.DOUBLE SQL.CONVERT.TINYINT

SQL.CONVERT.FLOAT SQL.CONVERT.VARBINARY

SQL.CONVERT.INTEGER SQL.CONVERT.VARCHAR

SQL.CONVERT.LONGVARBINARY

Table 7-5. ODBC info.type Values (Continued)

SQLGetInfo

7-44 UniVerse BASIC SQL Client Interface Guide

UniVerse NLS info.type Values. Table 7-6 lists the valid UniVerse NLS values
for info.type. For information about UniVerse NLS, see UniVerse NLS Guide.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

–1 SQL.ERROR

–2 SQL.INVALID.HANDLE

Table 7-6. UniVerse NLS info.type Values

Data Source Information

SQL.UVNLS.FIELD.MARK SQL.UVNLS.LC.NUMERIC

SQL.UVNLS.ITEM.MARK SQL.UVNLS.LC.TIME

SQL.UVNLS.MAP SQL.UVNLS.SQL.NULL

SQL.UVNLS.LC.ALL SQL.UVNLS.SUBVALUE.MARK

SQL.UVNLS.LC.COLLATE SQL.UVNLS.TEXT.MARK

SQL.UVNLS.LC.CTYPE SQL.UVNLS.VALUE.MARK

SQL.UVNLS.LC.MONETARY

SQLGetTypeInfo

SQL Client Interface Functions 7-45

SQLGetTypeInfo returns information about an SQL on the data source. You can
use SQLGetTypeInfo only against ODBC data sources.

Syntax
status = SQLGetTypeInfo (statement.env, sql.type)

Input Variables
statement.env SQL statement environment.

sql.type A driver-specific SQL data type, or one of the following:

Description
SQLGetTypeInfo returns a standard result set ordered by DATA.TYPE and
TYPE.NAME. Table 7-7 lists the columns in the result set. For more detailed infor-
mation about data type information, see the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide

Table 7-7. SQLGetTypeInfo Results

Column Name Data Type Description

TYPE.NAME Varchar Data-source-dependent data type name.

DATA.TYPE Smallint Driver-dependent or SQL data type.

PRECISION Integer Maximum precision of the data type on the data
source.

SQL.B.BINARY
SQL.BIGINT
SQL.BINARY
SQL.BIT
SQL.C.BINARY
SQL.CHAR
SQL.DATE
SQL.DECIMAL
SQL.DOUBLE
SQL.FLOAT
SQL.INTEGER
SQL.LONGVARBINARY

SQL.LONGVARCHAR
SQL.NUMERIC
SQL.REAL
SQL.SMALLINT
SQL.TIME
SQL.TIMESTAMP
SQL TINYINT
SQL.VARBINARY
SQL.VARCHAR
SQL.WCHAR
SQL.WLONGVARCHAR
SQL.WVARCHAR

SQLGetTypeInfo

7-46 UniVerse BASIC SQL Client Interface Guide

LITERAL.PREFIX Varchar(128) Characters used to prefix a literal.

LITERAL.SUFFIX Varchar (128) Characters used to terminate a literal.

CREATE.PARAMS Varchar(128) Parameters for a data type definition.

NULLABLE Smallint Data type accepts null values. Returns one of
the following:
SQL.NO.NULLS
SQL.NULLABLE
SQL.NULLABLE.UNKNOWN

CASE.SENSITIVE Smallint Character data type is case-sensitive. Returns
one of the following:
TRUE if data type is a character data type and is
case-sensitive
FALSE if data type is not a character data type
and is not case-sensitive

SEARCHABLE Smallint How the WHERE clause uses the data type.
Returns one of the following:
SQL.UNSEARCHABLE if data type cannot be
used
SQL.LIKE.ONLY if data type can be used only
with the LIKE predicate
SQL.ALL.EXCEPT.LIKE if data type can be
used with all comparison operators except
LIKE
SQL.SEARCHABLE if data type can be used
with any comparison operator

UNSIGNED.ATTRIBUTE

Smallint Data type is unsigned. Returns one of the
following:
TRUE if data type is unsigned
FALSE if data type is signed
NULL if attribute is not applicable to the data
type or the data type is not numeric

MONEY Smallint Data type is a money data type. Returns one of
the following:
TRUE if data type is a money data type
FALSE if it is not

Table 7-7. SQLGetTypeInfo Results (Continued)

Column Name Data Type Description

SQLGetTypeInfo

SQL Client Interface Functions 7-47

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

–1 SQL.ERROR

–2 SQL.INVALID.HANDLE

AUTO.INCREMENT Smallint Data type is autoincrementing. Returns one of
the following:
TRUE if data type is autoincrementing
FALSE if it is not
NULL if attribute is not applicable to the data
type or the data type is not numeric

LOCAL.TYPE.NAME Varchar(128) Localized version of TYPE.NAME.

MINIMUM.SCALE Smallint Minimum scale of the data type on the data
source.

MAXIMUM.SCALE Smallint Maximum scale of the data type on the data
source.

Table 7-7. SQLGetTypeInfo Results (Continued)

Column Name Data Type Description

SQLNumParams

7-48 UniVerse BASIC SQL Client Interface Guide

SQLNumParams returns the number of parameters in an SQL statement.

Syntax
status = SQLNumParams (statement.env, parameters)

Input Variable
statement.env SQL statement environment containing the prepared or executed

SQL statement. For connections to a local UniVerse server, state-
ment.env can be @HSTMT.

Output Variable
parameters Number of parameters in the statement.

Description
Use this function after preparing or executing an SQL statement or procedure call
to find the number of parameters in an SQL statement. If the statement associated
with statement.env contains no parameters, parameters is set to 0.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

SQLNumResultCols

SQL Client Interface Functions 7-49

SQLNumResultCols returns the number of columns in a result set.

Syntax
status = SQLNumResultCols (statement.env, cols)

Input Variable
statement.env SQL statement environment containing the executed SQL state-

ment. For connections to a local UniVerse server, statement.env can
be @HSTMT.

Output Variable
cols Number of report columns generated.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
Use this function after executing an SQL statement to find the number of columns
in the result set. If the executed statement was not a SELECT statement or a called
procedure that produced a result set, the number of result columns returned is 0.

Use this function when the number of columns to be bound to application vari-
ables is unknown—as, for example, when your program is processing SQL
statements entered by users.

SQLParamOptions

7-50 UniVerse BASIC SQL Client Interface Guide

SQLParamOptions lets applications specify an array of values for each parameter
assigned by SQLBindParameter.

Syntax
status = SQLParamOptions (statement.env, option, value)

Variables
statement.env SQL statement environment. For connections to a local UniVerse

server, statement.env can be @HSTMT.

option One of the following, followed by a value:

SQL.PARAMOPTIONS.SET
value is an input variable containing the number of rows
to process. It can be an integer from 1 through 1024.

SQL.PARAMOPTIONS.READ
value is an output variable containing the number of
parameter rows processed by SQLExecDirect or SQLEx-
ecute. As each set of parameters is processed, value is
updated to the current row number. If SQLExecDirect or
SQLExecute encounters an error, value contains the
number of the row that failed.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

–1 SQL.ERROR

–2 SQL.INVALID.HANDLE

Description
The ability to specify multiple values for a set of parameters is useful for bulk
inserts and other work requiring the data source to process the same SQL state-
ment multiple times with various parameter values. An application can, for
example, specify twenty values for each parameter associated with an INSERT

SQLParamOptions

SQL Client Interface Functions 7-51

statement, then execute the INSERT statement once to perform the twenty
insertions.

You can use SQLParamOptions before or after you issue SQLBindParameter
calls. You need only one SQLParamOptions call with SQL.PARAMOP-
TIONS.SET, no matter how many parameters are bound.

SQLParamOptions requires that the param argument specified in SQLBindPa-
rameter point to the first element of an array of parameter values.

When the SQL statement is executed, all variables are checked, data is converted
when necessary, and all values in the set are verified to be appropriate and within
the bounds of the marker definition. Values are then copied to low-level struc-
tures associated with each parameter marker. If a failure occurs while the values
are being checked, SQLExecDirect or SQLExecute returns SQL.ERROR, and value
contains the number of the row where the failure occurred.

After you issue an SQLParamOptions call with SQL.PARAMOPTIONS.SET, the
client program must supply all parameters as arrays until an SQLFreeStmt call
drops the statement environment or resets all parameter marker variables.

UniVerse Data Sources. After an SQLParamOptions call, SQLExecute and
SQLExecDirect can execute only the following statements until the statement
environment is dropped or the parameter marker variables are reset:

• INSERT
• UPDATE
• DELETE

SQLParamOptions works only for input parameter types.

ODBC Data Sources. SQLParamOptions works for all parameter types—output
and input/output parameters as well as the more usual input parameters.

Example
This example shows how you might use SQLParamOptions to load a simple
table. Table TAB1 has two columns: an integer column and a CHAR(30) column.

$include UNIVERSE.INCLUDE ODBC.H
arrsize = 20
dim p1(arrsize)
dim p2(arrsize)
SQLINS1 = "INSERT INTO TAB1 VALUES(?,?)"

SQLParamOptions

7-52 UniVerse BASIC SQL Client Interface Guide

rowindex = 0

status = SQLAllocEnv(henv)
status = SQLAllocConnect(henv, hdbc)
status = SQLConnect(hdbc, "odbcds", "dbuid", "dbpwd")
status = SQLAllocStmt(hdbc, hstmt)

status = SQLPrepare(hstmt, SQLINS1)
status = SQLBindParameter(hstmt, 1, SQL.B.BASIC, SQL.INTEGER, 0, 0, p1(1),

SQL.PARAM.INPUT)

status = SQLBindParameter(hstmt, 2, SQL.B.BASIC, SQL.CHAR, 30, 0, p2(1),
SQL.PARAM.INPUT)

status = SQLParamOptions(hstmt, SQL.PARAMOPTIONS.SET, arrsize)
for index = 1 to arrsize

p1(index) = index
p2(index) = "This is row ":index

next index

* now execute, delivering 20 sets of parameters in one network operation

stexec = SQLExecute(hstmt)
status = SQLParamOptions(hstmt, SQL.PARAMOPTIONS.READ, rowindex)

if stexec = SQL.ERROR then
print "Error in parameter row number ":rowindex

end else
print rowindex:" parameter marker sets were processed"

end

SQLPrepare

SQL Client Interface Functions 7-53

SQLPrepare passes an SQL statement or procedure call to the data source in order
to prepare it for execution by SQLExecute.

Syntax
status = SQLPrepare (statement.env, statement)

Input Variables
statement.env SQL statement environment from a previous SQLAllocStmt. For

connections to a local UniVerse server, statement.env can be
@HSTMT.

statement Either an SQL statement or a call to an SQL procedure, to be
executed at the data source. If you are connected to a UniVerse
server, it treats the SQL statement case-sensitively; all keywords
must be in uppercase letters. If you are connected to an ODBC
data source, it may treat identifiers and keywords in the SQL
statement case-sensitively.

To call an SQL procedure, use one of the following syntaxes:

[{] CALL procedure [([parameter [, parameter] …])] [}]
CALL procedure [argument [argument]…]

If you are connected to an ODBC data source, use the first syntax
and enclose the entire call statement in braces.

procedure Name of the procedure. If the procedure name
contains characters other than alphabetic or numeric,
enclose the name in double quotation marks. To
embed a single double quotation mark in the proce-
dure name, use two consecutive double quotation
marks.

parameter Either a literal value or a parameter marker that
marks where to insert values to send to or receive
from the data source. Programmatic SQL uses a ?
(question mark) as a parameter marker.

SQLPrepare

7-54 UniVerse BASIC SQL Client Interface Guide

Use parameters only if the procedure is a subroutine.
The number and order of parameters must corre-
spond to the subroutine arguments. For an ODBC
data source, parameters should be of the same data
type as the procedure requires.

argument Any valid keyword, literal, or other token you can use
in a UniVerse command line.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
Use this function to deliver either an SQL statement or a call to an SQL procedure
to the data source where it can prepare to execute the passed SQL statement or the
procedure. The application subsequently uses SQLExecute to tell the data source
to execute the prepared SQL statement or procedure.

What happens when the data source executes the SQLPrepare call depends on
the data source. In many cases the data source parses the SQL statement and
generates an execution plan that allows rapid, efficient execution of the SQL
statement.

Use SQLPrepare and SQLExecute functions when you are issuing SQL state-
ments or calling a procedure repeatedly. You can supply values to a prepared
INSERT or UPDATE statement and issue an SQLExecute call each time you
change the values of parameter markers. SQLExecute sends the current values of
the parameter markers to the data source and executes the prepared SQL state-
ment or procedure with the current values.

Note: Before you issue an SQLExecute call, all parameter markers in the SQL
statement or procedure call must be defined using an SQLBindParameter
call, otherwise SQLExecute returns an error.

SQLPrepare

SQL Client Interface Functions 7-55

If SQLBindParameter defines a procedure’s parameter type as
SQL.PARAM.OUTPUT or SQL.PARAM.INPUT.OUTPUT, values are returned to
the specified program variables.

UniVerse Data Sources. If you are connected to a UniVerse server, SQL state-
ments can refer to UniVerse files as well as to SQL tables.

ODBC Data Sources. If you execute a stored procedure or enter a command
batch with multiple SELECT statements, the results of only the first SELECT state-
ment are returned.

SQLRowCount

7-56 UniVerse BASIC SQL Client Interface Guide

SQLRowCount returns the number of rows changed by UPDATE, INSERT, or
DELETE statements, or by a called procedure that executes one of these
statements.

Syntax
status = SQLRowCount (statement.env, rows)

Input Variable
statement.env SQL statement environment containing the executed SQL state-

ment. For connections to a local UniVerse server, statement.env can
be @HSTMT.

Output Variable
rows Number of rows affected by the operation.

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
Statements such as GRANT and CREATE TABLE, which do not update rows in
the database, return 0 in rows.

For a SELECT statement, a 0 row count is always returned, unless the SELECT
statement includes the TO SLIST clause. In that case, SQLRowCount returns the
number of rows in the select list.

The value of rows returned after executing a stored procedure at the data source
may not be accurate. It is accurate for a single UPDATE, INSERT, or DELETE
statement.

SQLSetConnectOption

SQL Client Interface Functions 7-57

SQLSetConnectOption controls some aspects of the connection to a data source,
such as operating system login information and whether empty string data is
returned as null values.

Syntax
status = SQLSetConnectOption (connect.env, option, value)

Input Variables
connect.env Connection environment returned from a previous SQLAllocCon-

nect. For connections to a local UniVerse server, connect.env can be
@HDBC.

option is one of the following, followed by a value:

SQL.AUTOCOMMIT
value is one of the following:

SQL.AUTOCOMMIT.ON
Puts a private connection into autocommit mode.

SQL.AUTOCOMMIT.OFF
Puts a private connection into manual commit mode.

Use this option only with ODBC data sources. When you use it, the
connection must already be established, and the SQL.PRIVATE.TX
option must be set to SQL.PRIVATE.TX.ON.

SQL.EMPTY.NULL
A value that helps control whether the SQL Client Interface interprets
empty strings on a UniVerse data source as equivalent to the null
value. value is one of the following:

SQL.EMPTY.NULL.OFF (default)
SQL.EMPTY.NULL.ON

Use this option only with UniVerse data sources.

SQL.LIC.DEV.SUBKEY
A string of up to 24 characters, used to uniquely identify client devices
for UniVerse licensing when an application connects to a UniVerse
server via a multiple-tier connection.

SQLSetConnectOption

7-58 UniVerse BASIC SQL Client Interface Guide

SQL.OS.PWD
Specifies the user’s password when connecting to the data source
operating system. value is a character string. If the string is NULL or
empty, the operating system password is an empty string. Use this
option only with UniVerse data sources.

SQL.OS.UID
Specifies the user’s login name when connecting to the data source
operating system. value is a character string. If the string is NULL or
empty, SQLConnect tries to connect to the operating system using the
user name specified by the logon1 variable in the SQLConnect call.
Use this option only with UniVerse data sources.

SQL.PRIVATE.TX
value is one of the following:

SQL.PRIVATE.TX.ON
Specifies that transaction processing is controlled directly
by the application instead of by the UniVerse transaction
manager.

SQL.PRIVATE.TX.OFF
Specifies that transaction processing is controlled by the
UniVerse transaction manager instead of by the applica-
tion directly.

Use this option only with ODBC data sources.

SQL.TXN.ISOLATION
value is one of the following:

SQL.TXN.READ.UNCOMMITTED
Sets the server’s isolation level to 1.

SQL.TXN.READ.COMMITTED
Sets the server’s isolation level to 2.

SQL.TXN.REPEATABLE.READ
Sets the server’s isolation level to 3.

SQL.TXN.SERIALIZABLE
Sets the server’s isolation level to 4.

SQL.TXN.VERSIONING
No UniVerse equivalent.

SQLSetConnectOption

SQL Client Interface Functions 7-59

Use this option only with ODBC data sources. When you use it, the
connection must already be established, the SQL.PRIVATE.TX option
must be set to SQL.PRIVATE.TX.ON, and no transactions may be
active.

SQL.UVNLS.LC.ALL
A value that specifies all components of a locale. value is a slash-sepa-
rated list of five values, as set up in the server’s NLS.LC tables:

value1/value2/value3/value4/value5

Use this option only with UniVerse data sources running with NLS
enabled.

SQL.UVNLS.LC.COLLATE
A value that specifies the name of a locale whose sort order to use. Use
this option only with UniVerse data sources running with NLS
enabled.

SQL.UVNLS.LC.CTYPE
A value that specifies the name of a locale whose character type to use.
Use this option only with UniVerse data sources running with NLS
enabled.

SQL.UVNLS.LC.MONETARY
A value that specifies the name of a locale whose monetary conven-
tions to use. Use this option only with UniVerse data sources running
with NLS enabled.

SQL.UVNLS.LC.NUMERIC
A value that specifies the name of a locale whose numeric conventions
to use. Use this option only with UniVerse data sources running with
NLS enabled.

SQL.UVNLS.LC.TIME
A value that specifies the name of a locale whose time conventions to
use. Use this option only with UniVerse data sources running with
NLS enabled.

SQL.UVNLS.LOCALE
A value that specifies the name of a locale, all of whose conventions
are to be used. Use this option only with UniVerse data sources
running with NLS enabled.

SQLSetConnectOption

7-60 UniVerse BASIC SQL Client Interface Guide

Return Values
0 SQL.SUCCESS

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
The SQL.OS.UID and SQL.OS.PWD options let you specify user names and pass-
words for the operating system of a UniVerse server.

Converting Empty Strings to Null Values
If you want your client program to return empty strings as null values from a
UniVerse data source, and to convert null values to empty strings when inserting
or updating data on a UniVerse data source, do the following:

• Add an X-descriptor called @EMPTY.NULL to the dictionary of the table or
file. The only data in the descriptor should be an X in field 1.

• In your client program, set the SQL.EMPTY.NULL option to
SQL.EMPTY.NULL.ON.

SQL.EMPTY.NULL.OFF keeps empty strings and null values as distinct values.
SQL.EMPTY.NULL.ON forces empty strings to be treated as null values in those
files whose dictionary contains the appropriate @EMPTY.NULL entry.

Private Transactions
SQL.PRIVATE.TX.ON frees the connection from being managed by the UniVerse
transaction manager. When a connection is made private, the application can use
the SQL.AUTOCOMMIT option to put the connection into either autocommit
mode or manual commit mode. By default, private connections are in autocommit
mode, in which each SQL statement is treated as a separate transaction,
committed after the statement is executed.

In manual commit mode the application can do either of the following:

• Use the SQLTransact function to commit or roll back changes to the
database.

• Set the SQL.AUTOCOMMIT option of SQLSetConnectOption to
SQL.AUTOCOMMIT.ON. This commits any outstanding transactions and
returns the connection to autocommit mode.

SQLSetConnectOption

SQL Client Interface Functions 7-61

You must return the connection to autocommit mode before using SQLDiscon-
nect to close the connection. You can do this in two ways:

• Set the SQL.AUTOCOMMIT option of SQLSetConnectOption to
SQL.AUTOCOMMIT.ON

• Set the SQL.PRIVATE.TX option of SQLSetConnectOption to
SQL.PRIVATE.TX.OFF

When a connection is private, SQL.TXN.ISOLATION lets the application define
the default transaction isolation level at which to execute server operations. To
determine what isolation levels the data source supports, use the
SQL.TXN.ISOLATION.OPTION option of the SQLGetInfo function. This returns
a bitmap of the options the data source supports. The application can then use the
BASIC BIT functions to determine whether a particular bit is set in the bitmap.

Use SQLSetConnectOption with the SQL.TXN.ISOLATION option only in the
following two places:

• Immediately following an SQLConnect function call

• Immediately following an SQLTransact call to commit or roll back an
operation

Whenever you execute an SQL statement, a new transaction exists, which makes
setting the SQL.TXN.ISOLATION option illegal. If a transaction is active when
the SQL.TXN.ISOLATION.OPTION is set, the SQL Client Interface returns
SQL.ERROR and sets SQLSTATE to S1C00.

SQLSetParam

7-62 UniVerse BASIC SQL Client Interface Guide

SQLSetParam has been superseded by SQLBindParameter.

SQLSpecialColumns

SQL Client Interface Functions 7-63

SQLSpecialColumns gets information about columns in a table. Use this function
only when you are connected to an ODBC data source.

Syntax
status = SQLSpecialColumns (statement.env, col.type, schema, owner, tablename,

IDscope, null)

Input Variables
statement.env SQL statement environment.

col.type Type of column to return. col.type is one of the following:

SQL.BEST.ROWID Returns the best column or set of
columns that uniquely identifies a row in
a table.

SQL.ROWVER Returns the column or columns that are
automatically updated when any value
in the row is updated by a transaction.

schema Qualifier name for tablename. If a driver supports qualifiers for
some tables but not others, use an empty string for tables that do
not have qualifiers.

owner Name of the owner of the table. If a driver supports owners for
some table but not others, use an empty string for tables that do
not have owners.

tablename Name of the table.

IDscope Minimum required scope of the row ID. IDscope is one of the
following:

SQL.SCOPE.CURROW Row ID is guaranteed to be valid
only while positioned on that
row.

SQL.SCOPE.TRANSACTION Row ID is guaranteed to be valid
for the duration of the current
transaction.

SQL.SCOPE.SESSION Row ID is guaranteed to be valid
for the duration of the session.

SQLSpecialColumns

7-64 UniVerse BASIC SQL Client Interface Guide

null Can be one of the following:

SQL.NO.NULLS Excludes special columns that can have
null values.

SQL.NULLABLE Returns special columns even if they can
have null values.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

Description
Results are returned as a standard result set ordered by SCOPE. Table 7-8 lists the
columns in the result set. The lengths of VARCHAR columns are maximums; the
actual lengths depend on the data source. To get the length of the
COLUMN.NAME column, use the SQL.MAX.COLUMN.NAME.LEN option of
the SQLGetInfo function.

Table 7-8. SQLSpecialColumns Results

Column Name Data Type Description

SCOPE Smallint Actual scope of the row ID. It contains
one of the following:
SQL.SCOPE.CURROW
SQL.SCOPE.TRANSACTION
SQL.SCOPE.SESSION

The null value is returned when col.type
is SQL.ROWVER.

COLUMN.NAME Varchar(128)
Not null

Column identifier.

DATA.TYPE Smallint
Not null

Either an ODBC SQL data type or a
driver-specific SQL data type.

SQLSpecialColumns

SQL Client Interface Functions 7-65

SQLSpecialColumns lets applications scroll forward and backward in a result set
to get the most recent data from a set of rows. Columns returned for column type
SQL.BEST.ROWID are guaranteed not to change while positioned on that row.
Columns of the row ID can remain valid even when the cursor is not positioned
on the row. The application can determine this by checking the SCOPE column in
the result set.

Once the application gets values for SQL.BEST.ROWID, it can use these values to
reselect that row within the defined scope. The SELECT statement is guaranteed
to return either no rows or one row.

TYPE.NAME Varchar(128)
Not null

Data-source-dependent data type name.

PRECISION Integer Precision of the column on the data
source. The null value is returned for
data types where precision does not
apply.

LENGTH Integer The length in bytes of data transferred
on an SQLGetData or SQLFetch if
SQL.C.DEFAULT is specified. For
numeric data, this size can differ from
the size of the data stored on the data
source. This value is the same as the
PRECISION column for character or
binary data.

SCALE Smallint The scale of the column on the data
source. The null value is returned for
data types where scale does not apply.

PSEUDO.COLUMN Smallint Indicates whether the column is a
pseudo-column:
SQL.PC.UNKNOWN
SQL.PC.PSEUDO
SQL.PC.NOT.PSEUDO
Pseudo-columns should not be quoted
with the identifier quote character
returned by SQLGetInfo.

Table 7-8. SQLSpecialColumns Results (Continued)

Column Name Data Type Description

SQLSpecialColumns

7-66 UniVerse BASIC SQL Client Interface Guide

Columns returned for SQL.BEST.ROWID can always be used in an SQL select
expression or WHERE clause. However, SQLColumns does not necessarily
return these columns. If no columns uniquely identify each row in the table,
SQLSpecialColumns returns a row set with no rows; a subsequent call to
SQLFetch returns SQL.NO.DATA.FOUND.

Columns returned for column type SQL.ROWVER let applications check if any
columns in a given row have been updated while the row was reselected using
the row ID.

If col.type, IDscope, or null specifies characteristics not supported by the data
source, SQLSpecialColumns returns a result set with no rows, and a subsequent
call to SQLFetch returns SQL.NO.DATA.FOUND.

For complete details about the SQLSpecialColumns function, see the Microsoft
ODBC 2.0 Programmer’s Reference and SDK Guide.

SQLStatistics

SQL Client Interface Functions 7-67

SQLStatistics gets a list of statistics about a single table and its indexes. Use this
function only when you are connected to an ODBC data source.

Syntax
status = SQLStatistics (statement.env, schema, owner, tablename, index.type,

accuracy)

Input Variables
statement.env SQL statement environment.

schema Qualifier name for tablename. If a driver supports qualifiers for
some tables but not others, use an empty string for tables that do
not have qualifiers.

owner Name of the owner of the table. If a driver supports owners for
some table but not others, use an empty string for tables that do
not have owners.

tablename Name of the table.

index.type One of the following:

SQL.INDEX.UNIQUE

SQL.INDEX.ALL

accuracy The importance of the CARDINALITY and PAGES columns in the
result set:

SQL.ENSURE The driver unconditionally gets the statistics.

SQL.QUICK The driver gets results only if they are readily
available from the server. The driver does not
ensure that the values are current.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

−1 SQL.ERROR

−2 SQL.INVALID.HANDLE

SQLStatistics

7-68 UniVerse BASIC SQL Client Interface Guide

Description
SQLStatistics returns information as a standard result set ordered by
NON.UNIQUE, TYPE, INDEX.QUALIFIER, INDEX.NAME, and SEQ.IN.INDEX.
The result set combines statistics for the table with statistics for each index.
Table 7-9 lists the columns in the result set.

Note: SQLStatistics might not return all indexes. For example, a driver might
return only the indexes in files in the current directory. Applications can
use any valid index regardless of whether it is returned by SQLStatistics.

The lengths of VARCHAR columns are maximums; the actual lengths depend on
the data source. Use SQLGetInfo to determine the actual lengths of the
TABLE.QUALIFIER, TABLE.OWNER, TABLE.NAME, and COLUMN.NAME
columns.

Table 7-9. SQLStatistics Results

Column Name Data Type Description

TABLE.QUALIFIER Varchar(128) Table qualifier identifier (schema) of
the table. The null value is returned if
it is not applicable to the data source. If
a driver supports qualifiers for some
tables but not others, it returns an
empty string for tables without
qualifiers.

TABLE.OWNER Varchar(128) Name of the owner of the table. The
null value is returned if it is not appli-
cable to the data source. If a driver
supports owners for some tables but
not others, it returns an empty string
for tables without owners.

TABLE.NAME Varchar(128)
Not null

Name of the table.

NON.UNIQUE Smallint The index prohibits duplicate values:
TRUE if the index values can be
nonunique.
FALSE if the index values must be
unique.
NULL if TYPE is SQL.TABLE.STAT.

SQLStatistics

SQL Client Interface Functions 7-69

INDEX.QUALIFIER Varchar(128) Index qualifier identifier used by the
DROP INDEX statement. The null
value is returned if the data source
does not support index qualifiers or if
TYPE is SQL.TABLE.STAT.
If a nonnull value is returned, it must
be used to qualify the index name in a
DROP INDEX statement, otherwise
the TABLE.OWNER name should be
used to qualify the index name.

INDEX.NAME Varchar(128) Name of the index. The null value is
returned if TYPE is SQL.TABLE.STAT.

TYPE Smallint
Not null

Type of information returned:
SQL.TABLE.STAT indicates a statistic
for the table.
SQL.INDEX.CLUSTERED indicates a
clustered index.
SQL.INDEX.HASHED indicates a
hashed index.
SQL.INDEX.OTHER indicates another
type of index.

SEQ.IN.INDEX Smallint Column sequence number in index,
starting with 1. The null value is
returned if TYPE is SQL.TABLE.STAT.

COLUMN.NAME Varchar(128) Name of a column. If the column is
based on an expression, the expression
is returned. If the expression cannot be
determined, an empty string is
returned. If the index is filtered, each
column in the filter condition is
returned (this may require more than
one row). The null value is returned if
TYPE is SQL.TABLE.STAT.

Table 7-9. SQLStatistics Results (Continued)

Column Name Data Type Description

SQLStatistics

7-70 UniVerse BASIC SQL Client Interface Guide

If the row in the result set corresponds to a table, the driver sets TYPE to
SQL.TABLE.STAT and sets the following columns to NULL:

• NON.UNIQUE
• INDEX.QUALIFIER
• INDEX.NAME
• SEQ.IN.INDEX
• COLUMN.NAME
• COLLATION

COLLATION Char(1) Sort sequence for the column:
A indicates ascending.
B indicates descending.
The null value is returned if the data
source does not support column sort
sequence.

CARDINALITY Integer Number of rows in the table if TYPE is
SQL.TABLE.STAT. Number of unique
values in the index if TYPE is not
SQL.TABLE.STAT. The null value is
returned if the value is not available
from the data source or if it is not
applicable to the data source.

PAGES Integer Number of pages for the table if TYPE
is SQL.TABLE.STAT. Number of pages
for the index if TYPE is not
SQL.TABLE.STAT. The null value is
returned if the value is not available
from the data source or if it is not
applicable to the data source.

FILTER.CONDITION Varchar(128) If the index is filtered, the filter condi-
tion, or an empty string if the filter
condition cannot be determined.
The null value is returned if the index
is not filtered, or if it cannot be deter-
mined that the index is filtered, or
TYPE is SQL.TABLE.STAT.

Table 7-9. SQLStatistics Results (Continued)

Column Name Data Type Description

SQLStatistics

SQL Client Interface Functions 7-71

If CARDINALITY or PAGES are not available from the data source, the driver sets
them to NULL.

For complete details about the SQLStatistics function, see the Microsoft ODBC 2.0
Programmer’s Reference and SDK Guide.

SQLTables

7-72 UniVerse BASIC SQL Client Interface Guide

SQLTables returns a result set listing the tables matching the search patterns. Use
this function only when you are connected to an ODBC data source.

Syntax
status = SQLTables (statement.env, schema, owner, tablename, type)

Input Variables
statement.env SQL statement environment.

schema Schema name search pattern.

owner Table owner number search pattern.

tablename Table name search pattern.

type Table type (one of the following: BASE TABLE, VIEW, ASSOCIA-
TION, or TABLE) search pattern.

Description
This function returns statement.env as a standard result set of five columns
containing the schemas, owners, names, types, and remarks for all tables found
by the search. The search criteria arguments can contain a literal, an SQL LIKE
pattern, or be empty. If a literal or LIKE pattern is specified, only values matching
the pattern are returned. If a criterion is empty, tables with any value for that
attribute are returned. owner cannot specify a LIKE pattern. You can access the
result set with SQLFetch. These five columns have the following descriptors:

TABLE.SCHEMA VARCHAR(128)

TABLE.OWNER VARCHAR(128)

TABLE.NAME VARCHAR(128)

TABLE.TYPE VARCHAR(128)

REMARKS VARCHAR(254)

SQLTables

SQL Client Interface Functions 7-73

Special Search Criteria. Three special search criteria combinations enable an
application to enumerate the set of schemas, owners, and tables:

The ability to obtain information about tables does not imply that you have any
privileges on those tables.

Return Values
0 SQL.SUCCESS

1 SQL.SUCCESS.WITH.INFO

–1 SQL.ERROR

–2 SQL.INVALID.HANDLE

SQLSTATE Values

Table
Qualifier

Table
Owner

Table
Name

Table
Type Return is.. .

% empty
string

empty
string

ignored Set of distinct schema names

empty
string

% empty
string

ignored Set of distinct table owners

empty
string

empty
string

empty
string

% Set of distinct table types

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1008 Cancelled. Execution of the statement was stopped by an SQLCancel
call.

S1010 Function sequence error. statement.env is currently executing an SQL
statement.

S1C00 The table owner field was not numeric.

24000 Invalid cursor state. Results are still pending from the previous SQL
statement. Use SQLCancel to clear the results.

42000 Syntax error or access violation. This can be caused by a variety of
reasons. The native error code returned by the SQLError call indicates
the specific UniVerse error that occurred.

SQLTransact

7-74 UniVerse BASIC SQL Client Interface Guide

SQLTransact requests a COMMIT or ROLLBACK for all SQL statements associ-
ated with a connection or all connections associated with an environment. Use
this function only when you are connected to an ODBC data source.

Syntax
status = SQLTransact (bci.env, connect.env, type)

Input Variables
bci.env SQL Client Interface environment.

connect.env Connection environment or SQL.NULL.HDBC.

type One of the following:

SQL.COMMIT
Writes all modified data to the data source, releases all
lock acquired by the current transaction, and terminates
the transaction.

SQL.ROLLBACK
Discards any changes written during the transaction and
terminates it.

Description
This function provides the same transaction functions as the UniVerse BASIC
statements COMMIT, and ROLLBACK. When connect.env is a valid connection
environment with SQL.AUTOCOMMIT set to OFF, SQLTransact commits or rolls
back the connection.

To use SQLTransact, all of the following conditions must be met:

• The SQL.PRIVATE.TX option of SQLSetConnectOption is set to
SQL.PRIVATE.TX.ON.

• The SQL.AUTOCOMMIT option is set to SQL.AUTOCOMMIT.OFF.

• The connection is active.

Setting bci.env to a valid environment handle and connect.env to
SQL.NULL.HDBC requests the server to try to execute the requested action on all
hdbcs that are in a connected state.

SQLTransact

SQL Client Interface Functions 7-75

If any action fails, SQL.ERROR is returned, and the user can determine which
connections failed by calling SQLError for each connection environment in turn.

If you call SQLTransact with a type of SQL.COMMIT or SQL.ROLLBACK when
no transaction is active, SQL.SUCCESS is returned.

Return Values
0 SQL.SUCCESS

–1 SQL.ERROR

–2 SQL.INVALID.HANDLE

SQLSTATE Values

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1012 type did not contain SQL.COMMIT or SQL.ROLLBACK.

08003 No connection is active on connect.env.

08007 The connection associated with the transaction failed during the execu-
tion of the function. It cannot be determined if the requested operation
completed before the failure.

7-76 UniVerse BASIC SQL Client Interface Guide

Data Conversion A-1

A
Data Conversion

This appendix describes the UniVerse BASIC and ODBC SQL data types you can
specify with the SQLBindParameter and SQLBindCol calls. It also explains how
data is converted.

You use SQLBindParameter to convert BASIC data to an ODBC SQL data type
that can be sent to the data source. You specify the BASIC data type as
SQL.B.BASIC, except in two cases:

• If you are sending a date or a time in internal format to a UniVerse data
source, you specify the BASIC data type as SQL.B.INTDATE or
SQL.B.INTTIME.

• If you are sending raw data as a bit string to any data source, you specify
the BASIC data type as SQL.B.BINARY.

You use SQLBindCol to convert SQL data retrieved from the data source, to a
BASIC data type. You can specify that data retrieved from the data source be
stored locally as:

• A character string (SQL.B.CHAR)
• A bit string (SQL.B.BINARY)
• A number (SQL.B.NUMBER)
• An internal date (SQL.B.INTDATE)
• An internal time (SQL.B.INTTIME)

You can also specify SQL.B.DEFAULT. This lets the ODBC SQL data type deter-
mine the BASIC data type to which to convert data from the data source. The
NULL data type requires no conversion.

A-2 UniVerse BASIC SQL Client Interface Guide

Table A-1 shows the BASIC SQL Client Interface data types and their UniVerse
BASIC counterparts.

Table A-2 shows the ODBC SQL data types and their SQL definitions. You can use
these ODBC SQL data types when you connect to UniVerse data sources and to
ODBC data sources.

Table A-1. SQL Client Interface and BASIC Data Types

BASIC SQL
Client Interface

Data Type
BASIC Data Type Used in Calls

SQL.B.CHAR Character string. SQLBindCol

SQL.B.BINARY Bit string (raw data) SQLBindCol
SQLBindParameter

SQL.B.NUMBER Integer.
Double.

SQLBindCol

SQL.B.DEFAULT SQL data type at the source determines how
to store locally.

SQLBindCol

SQL.B.INTDATE Internal date. SQLBindCol
SQLBindParameter

SQL.B.INTTIME Internal time SQLBindCol
SQLBindParameter

SQL.B.BASIC The data determines the BASIC data type.
The data must be string, integer, or double.

SQLBindParameter

Table A-2. UniVerse SQL Data Types

ODBC SQL Data Type SQL Data Type Description and SQL Client Interface
Defaults

SQL.CHAR CHAR (n) Fixed-length character string
precision = n where 1 <= n <= 254

SQL.VARCHAR
SQL.LONGVARCHAR

VARCHAR (n) Variable-length character string
precision = n where 1 <= n <= 65535

SQL.WCHAR NCHAR (n) Fixed-length national character string
precision = n where 1 <= n <= 254

SQL.WVARCHAR
SQL.WLONGVARCHAR

NVARCHAR (n) Variable-length national character string
precision = n where 1 <= n <= 65535

SQL.BINARY BIT (n) Fixed-length bit string (raw data)
precision = n where 1 <= n <= 2032

Data Conversion A-3

Table A-2 represents the ODBC SQL data types currently supported by the BASIC
SQL Client Interface. Some data types encountered on ODBC data sources cannot
be mapped into any of these types. Your programs cannot fetch data from such
column types. If you try to execute an SQL SELECT statement that produces a
column with an unsupported data type, an application error (SQLSTATE code
S1004) is returned to the execution call. When this happens, use the SQLDe-
scribeCol or SQLColAttributes function to determine which column you
requested contains an unsupported data type. The ODBC SQL data type for these
columns is returned as SQL.BINARY.

SQL.VARBINARY
SQL.LONGVARBINARY

VARBIT (n) Variable-length bit string (raw data)
precision = n where 1 <= n <= 524,280

SQL.DECIMAL DECIMAL (p,s) Signed exact numeric
precision = p, scale = s

SQL.NUMERIC NUMERIC (p,s) Signed exact numeric
precision = p, scale = s

SQL.SMALLINT SMALLINT Signed exact numeric
precision = 5, scale = 0

SQL.INTEGER INTEGER Signed exact numeric
precision = 10, scale = 0

SQL.REAL REAL Signed approximate numeric
precision = 7

SQL.FLOAT FLOAT Signed approximate numeric
precision = 15

SQL.DOUBLE DOUBLE
PRECISION

Signed approximate numeric
precision = 15

SQL.DATE DATE Data source dependent

SQL.TIME TIME Internal time.

Table A-2. UniVerse SQL Data Types (Continued)

ODBC SQL Data Type SQL Data Type Description and SQL Client Interface
Defaults

A-4 UniVerse BASIC SQL Client Interface Guide

Table A-3 lists ODBC SQL data types you can use when connected to certain
ODBC data sources. Do not use these data types when connected to a UniVerse
data source unless your connection uses UniVerse ODBC.

Table A-3. ODBC SQL Data Types

ODBC SQL Data Type Description

SQL.TIMESTAMP1

1. ODBC data sources vary in compliance with the ODBC specification regarding what to
do with a missing component. For safety, always supply both components of a time-
stamp parameter.

Date and time information in the formats yyyy-mm-dd and
hh:mm:ss.

SQL.BIGINT2

2. Valid only for data sources such as ORACLE that support integers longer than 10 digits.

Signed integer up to 19 digits, unsigned integer up to 20
digits.

SQL.TINYINT3

3. Use the SQLGetTypeInfo function to determine if the column is signed or unsigned.

Signed integer from 0 through 255; unsigned integer from
−128 through +127.

SQL.BIT Data values of 0 or 1.

Data Conversion A-5

Converting BASIC Data to SQL Data
Use the SQLBindParameter call to specify the ODBC SQL data type to which to
convert outgoing BASIC data supplied for a parameter marker. This section
describes how the BASIC SQL Client Interface converts outgoing data.

SQLBindParameter verifies that the BASIC data type is either SQL.B.BASIC,
SQL.B.BINARY, SQL.B.INTDATE, or SQL.B.INTTIME. It does not check whether
the data type is consistent with a data conversion that may occur later.

Both SQLExecute and SQLExecDirect calls check the data type and convert the
data. Data from locations indicated in SQLBindParameter must be one of the
following:

• A number (integer or double data types)
• A character string
• A bit string (raw data)
• A subroutine
• A null value

Any other kind of data returns an error to the SQLExecute or SQLExecDirect call.

All data sent to UniVerse data sources is sent as character string data. Multivalued
data is sent to UniVerse data sources as multivalued dynamic arrays.

Note: You cannot send multivalued bit string values to a UniVerse data source,
because the UniVerse system delimiters cannot be recognized in a stream
of raw data bits.

When converting BASIC character string data to numeric SQL data types, all
numbers are rounded to 15 digits. The SQLSetConnectOption flag,
SQL.TRUNC.ROUND, is ignored.

Precision and Scale. Precision and scale specified by the SQLBindParameter
function are ignored if the data source is UniVerse.

For ODBC data sources, precision is observed for the following ODBC SQL data
types:

SQL.CHAR SQL.WCHAR
SQL.VARCHAR SQL.WVARCHAR
SQL.LONGVARCHAR SQL.WLONGVARCHAR
SQL.BINARY SQL.NUMERIC
SQL.VARBINARY SQL.DECIMAL
SQL.LONGVARBINARY

A-6 UniVerse BASIC SQL Client Interface Guide

Scale is observed for the following data types:

SQL.DECIMAL
SQL.NUMERIC

All data sent to ODBC data sources is checked by the ODBC driver and database
engine. Thus, conversion failures can be detected either by the BASIC SQL Client
Interface, by the ODBC driver, or by the underlying DBMS.

UniVerse Data Storage Format. UniVerse files sometimes use an internal format
to store DECIMAL and NUMERIC data types. In such cases, the file dictionary
contains a code that converts the stored representation of numbers into a format
suitable for output. For example, a file can store the number 123.45 as 12345. The
file dictionary uses an MD2 conversion to insert the decimal point when the
number is retrieved. You must ensure that BASIC variables sent to the data source
contain the correct numeric values whether they are read from UniVerse files or
not.

BASIC to SQL Character Types
No data conversion is necessary when converting BASIC character string data to
the following ODBC SQL character data types:

SQL.CHAR SQL.WCHAR
SQL.VARCHAR SQL.WVARCHAR
SQL.LONGVARCHAR SQL.WLONGVARCHAR

When the data is a BASIC subroutine, the subroutine name is used as the string
value.

UniVerse Data Sources. No precision is checked. Data is sent to the server as a
character string. Multivalued data is passed through to the server.

ODBC Data Sources. If the string is longer than the precision of the column as
specified in the SQLBindParameter or SQLSetParam call, the BASIC SQL Client
Interface returns SQL.ERROR, sets SQLSTATE to 01004. Other errors can be
returned from the data source if the string exceeds the width of the column as
defined in the data column.

Data Conversion A-7

BASIC to SQL Binary Types
No data conversion is done when converting BASIC bit string data to the
following ODBC SQL binary data types:

SQL.BIT SQL.BINARY
SQL.VARBINARY
SQL.LONGVARBINARY

For SQL.BIT binding, the application should use only the values 0 and 1. ODBC
drivers vary as to how they handle other values. Some may return SQL.ERROR,
others may return SQL.SUCCESS.WITH.INFO and deliver the integer part of a
fractional number.

UniVerse Data Sources. No precision is checked. Data is sent to the server as a
raw bit string. Multivalued data cannot be sent to the server.

ODBC Data Sources. If the string is longer than the precision of the column as
specified in the SQLBindParameter or SQLSetParam call, the BASIC SQL Client
Interface returns SQL.ERROR, sets SQLSTATE to 01004. Other errors can be
returned from the data source if the string exceeds the width of the column as
defined in the data column.

BASIC to SQL.DECIMAL and SQL.NUMERIC
If a BASIC string contains invalid nonnumeric characters, the BASIC SQL Client
Interface returns SQL.ERROR and sets SQLSTATE to 22005.

UniVerse Data Sources. Precision and scale are not checked. Data is sent to the
server as a character string.

ODBC Data Sources. If the string’s precision and scale are consistent with the
arguments of the SQLBindParameter or SQLSetParam call, the string is sent to
the ODBC driver for further checks.

If the number of significant digits (digits to the left of the decimal point) is greater
than the specified precision, SQL.ERROR is returned with an SQLSTATE of 22003.

If the number of insignificant digits (digits to the right of the decimal point) is
greater than the column’s defined scale, SQL.SUCCESS.WITH.INFO is returned
with an SQLSTATE of 01004, indicated that fractional truncation has occurred.

A-8 UniVerse BASIC SQL Client Interface Guide

BASIC to SQL Integer Types
The ODBC SQL integer types are:

SQL.INTEGER SQL.SMALLINT
SQL.BIGINT SQL.TINYINT

If a BASIC string is nonnumeric, the BASIC SQL Client Interface returns
SQL.ERROR and sets SQLSTATE to 22005.

UniVerse Data Sources. No precision is checked. Data is sent to the server as a
character string.

ODBC Data Sources. If the string represents a number that falls outside the
limits of the SQL data type of the column, SQL.ERROR is returned with an
SQLSTATE of 22003.

Some data sources such as SYBASE treat the TINYINT data type as unsigned,
others treat it as signed. Use SQLGetTypeInfo to determine whether the type is
signed or unsigned.

BASIC to SQL.REAL, SQL.FLOAT, and SQL.DOUBLE
If a BASIC string is nonnumeric, the BASIC SQL Client Interface returns
SQL.ERROR and sets SQLSTATE to 22005.

UniVerse Data Sources. No precision is checked. Data is sent to the server as a
character string.

ODBC Data Sources. These data types are passed directly to the ODBC driver
and the data source for handling. Drivers and data sources vary as to how they
handle numbers trying to represent too many digits in the number. Generally
data sources represent 15 digits of precision. Digits beyond 15 may be lost,
perhaps silently.

BASIC to SQL.DATE
The SQLBindParameter call can contain SQL.B.BASIC or SQL.B.INTDATE as the
BASIC data type. If a BASIC string is a date in external format, use SQL.B.BASIC.
If the string is a date in internal format, use SQL.B.INTDATE.

If you specify a BASIC data type of SQL.B.INTDATE and the ODBC SQL data
type is not SQL.DATE, the BASIC SQL Client Interface returns an error and sets
SQLSTATE to 07006. If the date is invalid, the BASIC SQL Client Interface returns
SQL.ERROR and sets SQLSTATE to 22008.

Data Conversion A-9

UniVerse Data Sources. Dates are sent to UniVerse data sources in internal
format. Dates already in internal format (SQL.B.INTDATE) need no conversion.
The BASIC SQL Client Interface accepts dates in any valid UniVerse external
format, including the ODBC format:

yyyy-mm-dd

ODBC Data Sources. Dates are sent to ODBC data sources in the following
format:

yyyy-mm-dd

Dates already in external format (SQL.B.BASIC) need no conversion. The BASIC
SQL Client Interface accepts dates in any valid UniVerse external format and
converts them to the correct format for the ODBC driver.

BASIC to SQL.TIME
The SQLBindParameter call can contain SQL.B.BASIC or SQL.B.INTTIME as the
BASIC data type. If the string is a time in external format (hh:mm:ss), use
SQL.B.BASIC. If the string is a time in internal format, use SQL.B.INTTIME.

All times in external format (SQL.B.BASIC) must be specified using the following
format:

[h]h:[m]m:[s]s

If the hour value is greater than 24, the value is divided by 24 and the remainder
is used for the hour. So 50:01:02 is equivalent to 02:01:02. The minutes and seconds
values must be from 0 to 59; if they are not, SQL.ERROR is returned and
SQLSTATE is set to 22008.

When sending times to a UniVerse data source, the MTS conversion code converts
times in external format to internal format.

If you specify a BASIC data type of SQL.B.INTTIME, the value is interpreted as
the number of seconds since midnight. The value should be from 0 (midnight) to
86399. On Universe data sources, values outside this range can produce bizarre
and unusual results. On ODBC data sources, if a value is outside this range, the
BASIC SQL Client Interface returns SQL.ERROR and sets SQLSTATE to 22008.

Times in internal format (SQL.B.INTTIME) need no conversion when they are
sent to a UniVerse data source.

A-10 UniVerse BASIC SQL Client Interface Guide

BASIC to SQL.TIMESTAMP
The TIMESTAMP data type is available only for ODBC data sources.

The SQLBindParameter call should contain SQL.B.BASIC as the BASIC data type
and SQL.TIMESTAMP as the SQL data type. The format for timestamp data is as
follows:

yyyy-mm-dd hh:mm:ss

Be sure to supply both parts of this string, because ODBC drivers vary in how
they handle a timestamp lacking a date or a time.

If either the date or the time is invalid, SQL.ERROR is returned and SQLSTATE is
set to 22008.

Data Conversion A-11

Converting SQL Data to BASIC Data
Use the SQLBindCol call to specify the BASIC data type to which to convert
incoming SQL data. This section describes how the BASIC SQL Client Interface
converts incoming data.

You can specify six BASIC data types:

• SQL.B.CHAR Converts to character string data

• SQL.B.BINARY Converts to bit string (raw) data

• SQL.B.NUMBER Converts to integer or double

• SQL.B.DEFAULT Uses the ODBC SQL data type to determine how to
convert

• SQL.B.INTDATE Converts a date to UniVerse internal date format

• SQL.B.INTTIME Converts a time to UniVerse internal time format

Use SQL.B.INTDATE only with the SQL types DATE and TIMESTAMP; use
SQL.B.INTTIME only with the SQL types TIME and TIMESTAMP. If you use
them with any other SQL type, the SQLFetch function returns SQL.ERROR and
sets SQLSTATE to 07006.

Unlike SQLBindParameter, which does not send truncated data to the data
source, the SQLFetch function associated with SQLBindCol delivers rounded or
truncated data to the BASIC program.

Conversions using the SQL.B.DEFAULT data type follow these rules:

• For the character string and bit string SQL data types, SQL.B.DEFAULT is
equivalent to using SQL.B.CHAR.

• For the numeric SQL data types, SQL.B.DEFAULT is equivalent to speci-
fying SQL.B.NUMBER at the SQLBindCol call. Data is stored in either
integer or double form.

• For UniVerse data sources, SQL.B.DEFAULT is always equivalent to
SQL.B.CHAR.

UniVerse files sometimes use an internal format to store DECIMAL and
NUMERIC data types. In such cases, the file dictionary contains a code that
converts the stored representation of the numbers into a format suitable for
output. For example, a file can store the number 123.45 as 12345. The file
dictionary uses an MD2 conversion to insert the decimal point when the number
is retrieved. For data coming from the data source, the BASIC program may have

A-12 UniVerse BASIC SQL Client Interface Guide

to use the ICONV function to convert incoming data to the proper UniVerse
internal storage format.

UniVerse servers return data to the client in a stripped external format. For
example, if a money column has a conversion code of MD22$, , the value $4.50 is
stored as the integer 450. The UniVerse server returns the value 4.50 to a bound
column, which is the correct numeric value in external format, stripped of any
text-formatting symbols such as $ (dollar sign) or , (comma).

Converting SQL Character Types to BASIC Data Types
There are six ODBC SQL character data types:

• SQL.CHAR
• SQL.VARCHAR
• SQL.LONGVARCHAR
• SQL.WCHAR
• SQL.WVARCHAR
• SQL.WLONGVARCHAR

SQL Character Data Types to SQL.B.CHAR and SQL.B.DEFAULT
Data does not need to be converted. Space is allocated and the string is stored in
the BASIC datum. Trailing spaces are deleted. Multivalued data is passed through
with value marks.

SQL Character Data Types to SQL.B.NUMBER
Nonnumeric SQL data returns SQL.ERROR and sets SQLSTATE to 22005.

Numeric SQL data is rounded to 15 digits. Multivalued data is transferred from
UniVerse data sources as SQL.B.CHAR (see next section). If the number of signifi-
cant digits (excluding trailing zeros) exceeds 15, the BASIC SQL Client Interface
returns SQL.ERROR and sets SQLSTATE to 01004. If there is a fractional part and
the number of digits without trailing zeros exceeds 15, SQLSTATE is set to 22001.
Otherwise SQL.SUCCESS is returned.

SQL Data BASIC Result SQLSTATE

JONES ---- 22005

123456789 123456789 00000

1234567890123456 ---- 01004

123456789012345 123456789012345 00000

Data Conversion A-13

Converting SQL Binary Types to BASIC Data Types
There are three ODBC SQL binary data types:

• SQL.BINARY
• SQL.VARBINARY
• SQL.LONGVARBINARY

SQL Binary Data Types to SQL.B.BINARY and SQL.B.DEFAULT
Raw data is not converted. Space is allocated and the bit string is stored in the
BASIC datum.

Note: Multivalued data is passed through with value marks, but because the
data is passed as a bit string, the value marks cannot be distinguished as
meaningful delimiters. To fetch multivalued bit string data from a
UniVerse data source, use dynamic normalization (see UniVerse SQL
Reference).

Converting SQL Numeric Types to BASIC Data Types
There are seven ODBC SQL numeric data types:

• SQL.DECIMAL
• SQL.NUMERIC
• SQL.SMALLINT
• SQL.INTEGER
• SQL.REAL
• SQL.FLOAT
• SQL.DOUBLE

123456789012345000 123456789012345000 00000

1.2e18 1200000000000000000 00000

123e-11 0.00000000123 00000

1234.567890123456789 1234.56789012346 22001

123456789012345.1 123456789012345 22001

12345678901234.1 12345678901234.1 00000

12345678901234.6 12345678901234.6 00000

12345678901234.567 12345678901234.6 22001

SQL Data BASIC Result SQLSTATE

A-14 UniVerse BASIC SQL Client Interface Guide

SQL Numeric Types to SQL.B.CHAR
The number is put in the BASIC variable in ASCII format.

Data returned from a UniVerse data source does not need to be converted. Space
is allocated and the string is stored in the BASIC datum. Trailing spaces are
deleted. Multivalued data is passed through with value marks.

SQL Numeric Types to SQL.B.NUMBER and SQL.B.DEFAULT
SMALLINT and INTEGER types are stored as BASIC integers. All others are
stored as doubles.

Data returned from a UniVerse data source to SQL.B.DEFAULT does not need to
be converted. Space is allocated and the string is stored in the BASIC datum.
Trailing spaces are deleted. If the conversion results in an integer part loss, the
BASIC SQL Client Interface returns SQL.ERROR and sets SQLSTATE to 01004. If
the conversion results in a fractional part loss, SQL.ERROR is returned and
SQLSTATE is set to 22001.

Multivalued numeric data returned from a UniVerse data source to
SQL.B.NUMBER is transferred as a dynamic array. Values are delimited by value
marks. No conversion or data checking occurs. SUCCESS.WITH.INFO is
returned, and SQLSTATE indicates that the data is multivalued and a single result
was returned.

Converting SQL Date, Time, and Timestamp Types to
BASIC Types
The BASIC SQL Client Interface returns an SQL date or time in two ways:

• From UniVerse servers, as a character string or as an internal date or time
• From ODBC servers, as a character string

SQL Data SQL Type BASIC Result SQLSTATE

12345 SMALLINT 12345 00000

123456789 INTEGER 123456789 00000

123456789. FLOAT 123456789. 00000

12345678901234567.25 DOUBLE 12345678901234600 00000

1234.37218738172312 DOUBLE 1234.3721873817 00000

Data Conversion A-15

You cannot convert any of these SQL data types to SQL.B.NUMBER. If you try,
SQLFetch generates SQL.ERROR and sets SQLSTATE to 07006.

SQL DATE Data to SQL.B.INTDATE

UniVerse Data Sources. No conversion is required, because dates are trans-
ferred in internal format.

ODBC Data Sources. The BASIC SQL Client Interface accepts dates in external
format and converts them to dates in internal format.

SQL DATE and TIME Data to SQL.B.CHAR and SQL.B.DEFAULT
Dates from both UniVerse and ODBC data sources are returned in the following
format:

yyyy-mm-dd

Times from both UniVerse and ODBC data sources are returned in the following
format:

hh:mm:ss

If the date or time is not valid, SQLFetch returns SQL.ERROR and sets
SQLSTATE to 22008.

SQL TIME Data to SQL.B.INTTIME
Times from both UniVerse and ODBC data sources are converted to UniVerse
times in internal format via the MTS conversion code. The resulting integer is the
data returned in the bound variable.

SQL TIMESTAMP Data to SQL.B.CHAR and SQL.B.DEFAULT
The TIMESTAMP data type is available only from ODBC data sources. Time-
stamp data is returned in the following formats:

yyyy-mm-dd

hh:mm:ss

SQL TIMESTAMP Data to SQL.B.INTDATE and SQL.B.INTTIME
The date part of a TIMESTAMP value is converted to a UniVerse date in internal
format via a D2 conversion code. The time part of a TIMESTAMP value is
converted to a UniVerse time in internal format via an MTS conversion code.

The resulting integer is the data returned in the bound variable.

A-16 UniVerse BASIC SQL Client Interface Guide

SQL Client Interface Demonstration Program B-1

B
SQL Client Interface

Demonstration Program

This appendix describes a demonstration program that shows how to use the SQL
Client Interface. The program does the following:

• Gathers information to log on to a data source
• Connects to the data source
• Creates a local UniVerse table and populates it with data
• Drops and creates the tables on the data source
• Reads the UniVerse file and inserts the data into the data source table
• Selects the file from the data source and displays it on the screen

The demonstration program is called SQLBCIDEMO. It is in the BP file of the UV
account. For information about how to run the SQLBCIDEMO program, see
Chapter 2, “Getting Started.”

Main Program
First the program includes the SQL Client Interface definitions from the ODBC.H
file:

* Include the ODBC definitions

$INCLUDE UNIVERSE.INCLUDE ODBC.H

form = "T##########"
dash = "----------"
Expect = ""

B-2 UniVerse BASIC SQL Client Interface Guide

The program creates an ODBC environment and a connection environment. Use
the SQLSetConnectOption call to specify the operating system user name and
password.

STATUS = SQLAllocEnv(DBCENV)
IF STATUS <> SQL.SUCCESS THEN STOP "Failed to allocate an ODBC environment"

STATUS = SQLAllocConnect(DBCENV,CONENV)
IF STATUS <> SQL.SUCCESS THEN STOP "Failed to allocate a CONNECT environment"

The next section gathers the name of the data source, the user name and password
for the server operating system, and information for the data source. The DBMS
information is often a user name and a password.

PRINT "Please enter the target data source ":
INPUT SOURCE
UID=""
PWD=""
gosub testodbc

if toodbc = 0
then

PRINT "Please enter the username for the server operating system login ":
 INPUT OSUID
 PRINT "Please enter the operating system password for user ":OSUID:" ":
 ECHO OFF
 INPUT OSPWD
 PRINT ""
 ECHO ON

PRINT "Enter name or path of remote schema/account (hit return if local)":
 INPUT UID
 PWD = ""
 PRINT "";PRINT ""

STATUS = SQLSetConnectOption(CONENV, SQL.OS.UID, OSUID)
 STATUS = SQLSetConnectOption(CONENV, SQL.OS.PWD, OSPWD)
end
else if toodbc = 1
then
 PRINT "Enter the first DBMS connection parameter: ":
 input UID
 PRINT "Enter the second DBMS connection parameter: ":
 echo off
 input PWD
 echo on
 PRINT "";PRINT ""
end

SQL Client Interface Demonstration Program B-3

The following lines make a connection to the data source:

PRINT "Connecting to data source: ": SOURCE
Fn = "SQLConnect"
STATUS = SQLConnect(CONENV,SOURCE,UID,PWD)
GOSUB CKCONENV

After making the connection, the program creates some local UniVerse files and
loads them with data:

gosub CREATEFILES
gosub LOADFILES

The following lines create an SQL statement environment for executing SQL
statements:

Fn = "SQLAllocStmt"
STATUS = SQLAllocStmt(CONENV,STMTENV)
GOSUB CKCONENV

Next the program creates some SQL tables on the data source, then loads the
tables with data by reading records from UniVerse files:

gosub CREATETABLES
gosub LOADTABLES

After loading the SQL tables, the program reads them back and displays them:

gosub SELECTFILES

The following lines free up the statement, connection, and ODBC environments,
and exit the program:

Fn = "SQLFreeStmt"
STATUS = SQLFreeStmt(STMTENV, SQL.DROP)
GOSUB CKSTMTENV

Fn = "SQLDisconnect"
STATUS = SQLDisconnect(CONENV)
GOSUB CKCONENV

Fn = "SQLFreeConnect"
STATUS = SQLFreeConnect(CONENV)
GOSUB CKCONENV

Fn = "SQLFreeEnv"
STATUS = SQLFreeEnv(DBCENV)
IF STATUS <> SQL.SUCCESS THEN STOP "Failed to release ODBC environment"

STOP "Exiting SQLBCIDEMO"

B-4 UniVerse BASIC SQL Client Interface Guide

Creating Local UniVerse Files
The following subroutine creates a set of local UniVerse files. These files contain
data to be uploaded into a data source.

CREATEFILES:

CREATE.STAFF = "CREATE.FILE SQLCOSTAFF 2 1 1"
DIM DICT(8)
f = @FM
DICT(2) = "EMPNUM": f:"D":f:0:f:f:f:"10L":f:"S":f:f:"CHARACTER,10":f
DICT(3) = "EMPNAME": f:"D":f:1:f:f:f:"10L":f:"S":f:f:"CHARACTER,10":f
DICT(4) = "EMPGRADE":f:"D":f:2:f:"MD0":f:f:"10R":f:"S":f:f:"INTEGER":f
DICT(5) = "EMPCITY": f:"D":f:3:f:f:f:"15L":f:"S":f:f:"CHARACTER,15":f
DICT(6) = "@REVISE": f: "PH":f:f:f:f:f:f:f:f
DICT(7) = "@":f:"PH":f:"ID.SUP EMPNUM EMPNAME EMPGRADE EMPCITY":f:f:f:f:f:f:f
DICT(8) = "@KEY":f:"PH":f:"EMPNUM":f:f:f:f:f:f:f

First the program creates a table in the UniVerse account:

OPEN "SQLCOSTAFF" TO STAFFVAR THEN
 CLOSE STAFFVAR
 PRINT "Deleting local SQLCOSTAFF file"
 EXECUTE "DELETE.FILE SQLCOSTAFF"
 PRINT ""
END

EXECUTE CREATE.STAFF
PRINT ""

Now the program populates the dictionary with definitions that would have been
put in with the following SQL statement:

* CREATE TABLE SQLCOSTAFF (TYPE 2, MODULO 1, SEPARATION 1,
* EMPNUM CHAR(10) NOT NULL PRIMARY KEY,
* EMPNAME CHAR(10), EMPGRADE INTEGER, EMPCITY CHAR(15));

OPEN "DICT", "SQLCOSTAFF" TO STAFFVAR ELSE STOP "Failed to open DICT SQLCOSTAFF"
REC = ""
FOR INDEX = 2 TO 8
 ID = DICT(INDEX)<1>
 FOR I = 2 TO 9
 REC<I-1> = DICT(INDEX)<I>
 NEXT I
 WRITE REC TO STAFFVAR, ID
NEXT INDEX

CLOSE STAFFVAR
RETURN

SQL Client Interface Demonstration Program B-5

Inserting Data into Local UniVerse Tables
The following subroutine inserts data into a set of local UniVerse tables:

LOADFILES:

*
* Setup data to insert into UniVerse tables and data source' tables
*

DIM EMPDATA(5)
EMPDATA(1) = "E1":@FM:"Alice":@FM: 12:@FM:"Deale"
EMPDATA(2) = "E2":@FM:"Betty":@FM: 10:@FM:"Vienna"
EMPDATA(3) = "E3":@FM:"Carmen":@FM: 13:@FM:"Vienna"
EMPDATA(4) = "E4":@FM:"Don":@FM: 12:@FM:"Deale"
EMPDATA(5) = "E5":@FM:"Ed":@FM: 13:@FM:"Akron"

*
* Clear the files and then load them up
*

EXECUTE "CLEAR.FILE SQLCOSTAFF"
OPEN "SQLCOSTAFF" TO STAFFVAR ELSE STOP "Failed to open SQLCOSTAFF File"
FOR INDEX = 1 TO 5
 REC = EMPDATA(INDEX)
 ID = REC<1>
 DREC = REC<2>:@FM:REC<3>:@FM:REC<4>
 WRITE DREC TO STAFFVAR, ID
NEXT INDEX
CLOSE STAFFVAR

RETURN

Creating Tables on the Data Source
The following subroutine creates tables on the chosen data source:

CREATETABLES:

* Create Table statement to build the test table. These are in upper case
* because UniVerse systems are often case sensitive. Because this program
* can be run using the local server on UniVerse the table name on the server
* must be different than the file name on the client.

CTBL1 = "CREATE TABLE TSQLCOSTAFF(EMPNUM CHAR(10) NOT NULL PRIMARY KEY, EMPNAME
CHAR(10), GRADE INT, CITY CHAR(15))"

B-6 UniVerse BASIC SQL Client Interface Guide

* Drop table statements to alwasy drop the target table before re-creating
* them.

DTBL1 = "DROP TABLE TSQLCOSTAFF"

* Now create the tables needed for testing on the host DBMS

PRINT "Dropping TSQLCOSTAFF table at ":SOURCE
Fn = "SQLExecDirect"; Expect = "S0002"
STATUS = SQLExecDirect(STMTENV, DTBL1)
GOSUB CKSTMTENV
Expect = ""

PRINT ""; PRINT "Creating TSQLCOSTAFF table at ":SOURCE
STATUS = SQLExecDirect(STMTENV,CTBL1)
GOSUB CKSTMTENV

RETURN

Inserting Data into the Data Source Table
The following subroutine loads data into the table on the data source. The param-
eter markers make it easy to load multiple rows of data.

LOADTABLES:

INST1 = "INSERT INTO TSQLCOSTAFF VALUES (?, ?, ?, ?)"

ROWNUM = 0
Fn = "SQLBindParameter"
PRINT ""; PRINT "Setting values for the parameter markers"

STATUS = SQLBindParameter(STMTENV, 1, SQL.B.BASIC, SQL.CHAR, 10, 0, EMPNUM)
GOSUB CKSTMTENV

STATUS = SQLBindParameter(STMTENV, 2, SQL.B.BASIC, SQL.CHAR, 10, 0, EMPNAME)
GOSUB CKSTMTENV

STATUS = SQLBindParameter(STMTENV, 3, SQL.B.BASIC, SQL.INTEGER, 0, 0, GRADE)
GOSUB CKSTMTENV

STATUS = SQLBindParameter(STMTENV, 4, SQL.B.BASIC, SQL.CHAR, 15, 0, CITY)
GOSUB CKSTMTENV

PRINT ""; PRINT "Prepare the SQL statement to load TSQLCOSTAFF table"
Fn = "SQLPrepare"
STATUS = SQLPrepare(STMTENV, INST1)
GOSUB CKSTMTENV

SQL Client Interface Demonstration Program B-7

Now the program opens the local UniVerse SQLCOSTAFF table, reads values
from it, puts the values into the SQLBindParameter variables, and executes the
prepared INSERT statement:

OPEN "SQLCOSTAFF" TO FILEVAR ELSE STOP "Failed to open SQLCOSTAFF file"
SELECT FILEVAR

NEXTID:
ROWNUM = ROWNUM+1
READNEXT ID ELSE GOTO EOD1
READ REC FROM FILEVAR,ID ELSE STOP "Error reading local SQLCOSTAFF file"
EMPNUM = ID
EMPNAME = REC<1>
GRADE = REC<2>
CITY = REC<3>

PRINT "Loading row ":ROWNUM:" of SQLCOSTAFF"
Fn = "SQLExecute"
STATUS = SQLExecute(STMTENV)
GOSUB CKSTMTENV
GOTO NEXTID

EOD1:
CLOSE FILEVAR
ROWNUM = 0

RETURN

Selecting Data from the Data Source
The following subroutine selects data from the data source:

SELECTFILES:

* Select statements to retrieve data from sqlcostaff table

SEL01 = "SELECT EMPNUM, EMPNAME, GRADE, CITY FROM TSQLCOSTAFF"

* Now select the data back & list it on the terminal

PRINT "Execute a SELECT statement against the TSQLCOSTAFF table"
PRINT ""

Fn = "SQLExecDirect"
STATUS = SQLExecDirect(STMTENV,SEL01)
GOSUB CKSTMTENV

B-8 UniVerse BASIC SQL Client Interface Guide

PRINT ""; PRINT "Bind columns to program variables"
Fn = "SQLBindCol"
STATUS = SQLBindCol(STMTENV, 1, SQL.B.CHAR, EMPNUM.RET)
GOSUB CKSTMTENV

STATUS = SQLBindCol(STMTENV, 2, SQL.B.CHAR, EMPNAME.RET)
GOSUB CKSTMTENV

STATUS = SQLBindCol(STMTENV, 3, SQL.B.NUMBER, GRADE.RET)
GOSUB CKSTMTENV

STATUS = SQLBindCol(STMTENV, 4, SQL.B.CHAR, CITY.RET)
GOSUB CKSTMTENV

PRINT "EMPNUM" form:"EMPNAME" form:"GRADE" form :"CITY" form
PRINT dash form:dash form:dash form :dash form
STATUS = 0
LOOP
Fn = "SQLFetch"
WHILE STATUS <> SQL.NO.DATA.FOUND DO
 STATUS = SQLFetch(STMTENV)
 GOSUB CKSTMTENV
 IF STATUS <> SQL.NO.DATA.FOUND
 THEN
 PRINT EMPNUM.RET form:EMPNAME.RET form:GRADE.RET form:CITY.RET
 END
REPEAT

STATUS = SQLFreeStmt(STMTENV, SQL.UNBIND)
GOSUB CKSTMTENV
RETURN

Checking for Errors
The following two subroutines check to see if an error occurred. The first subrou-
tine is used for calls issued when there is a connection environment but no SQL
statement environment:

CKCONENV:

COUNT = -1
 IF STATUS EQ -2 THEN STOP "INVALID CONNECTION HANDLE"
 IF STATUS NE 0
 THEN
201*
 ST = SQLERROR(-1,CONENV,-1,STATE,NATCODE,ERRTXT)
 IF ST <> SQL.NO.DATA.FOUND
 THEN
 PRINT "**"
 COUNT = 1

SQL Client Interface Demonstration Program B-9

 IF Expect NE 0 AND STATE = Expect AND ST <> SQL.NO.DATA.FOUND
 THEN
 PRINT "Allowed error of ":STATE:" returned for func ":Fn
 GOTO 299
 END
 ELSE
 PRINT "Status for ":Fn:" call is: ":STATUS
 PRINT "SQLSTATE,NATCOD are:" : STATE:" ":NATCODE
 PRINT "Error text is"
 PRINT " " : ERRTXT
 END
 IF ST = SQL.SUCCESS THEN GOTO 201
 END
 IF STATUS = -1 AND COUNT = 1 THEN STOP "EXITING CKCONENV"
 END
299*
 IF STATUS <> 0 THEN PRINT "**"
 RETURN

The second subroutine is used for calls issued when there is an SQL statement
environment:

CKSTMTENV:
 IF STATUS EQ -2 THEN STOP "INVALID STATEMENT HANDLE"

 IF STATUS EQ 100 THEN RETURN
 IF STATUS NE 0
 THEN
301*
 ST = SQLERROR(-1,-1,STMTENV,STATE,NATCODE,ERRTXT)
 IF ST <> SQL.NO.DATA.FOUND
 THEN
 PRINT "**"
 COUNT = 1
 IF Expect NE 0 AND STATE = Expect AND ST <> SQL.NO.DATA.FOUND
 THEN
 PRINT "Allowed error of ":STATE:" returned for func ":Fn
 GOTO 399
 END
 ELSE
 PRINT "Status for ":Fn:" call is: ":STATUS
 PRINT "SQLSTATE,NATCOD are:" : STATE:" ":NATCODE
 PRINT "Error text is "
 PRINT " " : ERRTXT
 END
 IF ST = 0 THEN GOTO 301
 END
 IF STATUS = -1 AND COUNT = 1 THEN STOP "EXITING CKSTMTENV"
 END
399*
 IF STATUS <> 0 THEN PRINT "**"
 RETURN

B-10 UniVerse BASIC SQL Client Interface Guide

Error Codes C-1

C
Error Codes

Table C-1 lists the SQLSTATE values and the corresponding messages they
generate.

Table C-1. Error Codes

SQLSTATE Message

00000 Successful completion

01002 Disconnect failure

01004 Data has been truncated

07001 Not all parameters markers have been resolved

07006 Unsupported data type

08001 Connect failure

08002 Connection already established

08003 Connection is not established

08007 Transaction commit failure

08S01 Communications link failed during operation

21S01 Number of columns inserted doesn’t match number expected

21S02 Number of columns selected doesn’t match number defined in
CREATE VIEW

22001 Character string truncation

22001 Fractional truncation

22003 Numeric value out of range

22005 Nonnumeric data was found where numeric is required

22008 Illegal date/time value

C-2 UniVerse BASIC SQL Client Interface Guide

23000 Integrity constraint violation

24000 Invalid cursor state

25000 Connect/disconnect with an active transaction is illegal

34000 An invalid cursor name was specified

3C000 A duplicate cursor name was specified

40000 Transaction rolled back

40001 An SQL statement with NOWAIT encountered a conflicting
lock.

42000 User lacks SQL privileges or operating system permissions

IA000 Output from the EXPLAIN keyword.

IM001 Unsupported function

IM002 The data source is not in the configuration file

IM003 An unknown DBMS type has been specified

IM975 Output parameter markers are valid only with procedure calls

IM976 ODBC is not installed on the system

IM977 Multivalued parameter finding for CALL not allowed

IM978 SQLBindMvCol/SQLBindMvParam illegal on 1NF connection

IM979 SQLGetData on column bound as multivalued is illegal

IM980 Remote password is required

IM981 Multivalued data present, single result returned

IM982 Remote user ID is required

IM982 Only a single environment variable can be allocated

IM983 Nested transactions to non-UniVerse databases not allowed

IM985 Error in RPC interface

IM986 Improper SQLTYPE option

IM987 Improper MAPERROR option

IM988 Row exceeds maximum allowable width

IM995 An illegal connect parameter was detected

IM996 Fetching into an ODBC environment variable not allowed

Table C-1. Error Codes (Continued)

SQLSTATE Message

Error Codes C-3

IM997 An illegal configuration option was found

IM998 There is no configuration file, or an error was found in the file

IM999 An illegal network type was specified

S0001 Table or view already exists

S0002 Table or view not found

S0021 Column already exists

S0022 Column not found

S1000 An error occurred at the data source

S1001 Memory allocation failure

S1002 An invalid column number specified

S1003 An illegal SQL data type was supplied

S1004 An unsupported SQL data type was encountered

S1009 A 0 or empty pointer was specified

S1009 An illegal option value was specified

S1010 Function call is illegal at this point

S1012 Invalid transaction code

S1015 No cursor name was specified

S1090 Invalid parameter length

S1090 Invalid string or buffer length

S1091 An unsupported attribute was specified

S1092 An illegal option value was specified

S1093 An illegal parameter number was specified

S1095 Function type out of range

S1095 Redimensioning arrays containing SQL Client Interface vari-
ables, bound columns, or parameter markers

S1096 Information type out of range

S1C00 An invalid data type has been requested

S1C00 Driver does not support this function

Table C-1. Error Codes (Continued)

SQLSTATE Message

C-4 UniVerse BASIC SQL Client Interface Guide

UniVerse Extended Parameters D-1

D
UniVerse

Extended Parameters

Table D-1 lists data source and DBMS-type extended parameters with their
current default settings.

Table D-1. Extended Parameters

Parameter Name Description Modifiable

AUTOINC Set to YES if data source can return whether a col-
umn is an autoincrement column.
Defaults: UNIVERSE NO

ODBC Not used in this release.

No

BIGINTPREC Precision for SQL_BIGINT data. Represents the
number of digits and SQL_BIGINT value can have.
Defaults: UNIVERSE N/A

ODBC 38

CASE Set to YES if data source can determine if a column
is case-sensitive to collations.
Defaults: UNIVERSE YES

ODBC Not used in this release.

No

DATEFORM Date format. Converts dates between UniVerse and
the format required by the data source. Defaults
should be appropriate.
Defaults: UNIVERSE D–YMD[4,2,2]

ODBC Not used in this release.

Yes

DATEPREC Date field width. Controls how many characters of
the complete DATE value are used when convert-
ing an SQL date to a date in internal UniVerse for-
mat. The DATE value from some systems may
include timestamp information as well as date
information.
Defaults: UNIVERSE N/A

ODBC 38

Yes

D-2 UniVerse BASIC SQL Client Interface Guide

DBLPREC Precision for SQL_DOUBLE data. Represents the
number of digits an SQL_DOUBLE value can have.
Defaults: UNIVERSE N/A

ODBC 38

Yes

DSPSIZE Set to YES if data source supplies a display size
value.
Defaults: UNIVERSE YES

ODBC Not used in this release.

No

FLOATPREC Precision for SQL_FLOAT data. Represents the
number of a digits an SQL_FLOAT value can have.
Defaults: UNIVERSE N/A

ODBC 38

Yes

INTPREC Precision for SQL_INTEGER data. Represents the
number of digits an SQL_INTEGER value can have.
Defaults: UNIVERSE N/A

ODBC 38

Yes

MAPERROR Lets you map a data source error code to a BASIC
SQL Client Interface error code. Common SQL Cli-
ent Interface errors are already mapped.
Defaults: UNIVERSE

MAPERROR = 08001 = 930129
MAPERROR = 08004 = 930133
MAPERROR = 08004 = 930127
MAPERROR = 08004 = 930137
MAPERROR = 21S01 = 950059
MAPERROR = 21S02 = 950415
MAPERROR = 21S02 = 950417
MAPERROR = 22005 = 950043
MAPERROR = 22005 = 950121
MAPERROR = 22005 = 950122
MAPERROR = 22005 = 950169
MAPERROR = 22005 = 950617
MAPERROR = 23000 = 923012
MAPERROR = 23000 = 923013
MAPERROR = 23000 = 950136
MAPERROR = 23000 = 950568
MAPERROR = 23000 = 950645
MAPERROR = 40000 = 040065
MAPERROR = 40000 = 909046
MAPERROR = 40000 = 950604

Yes

Table D-1. Extended Parameters (Continued)

Parameter Name Description Modifiable

UniVerse Extended Parameters D-3

MAPERROR
(continued)

MAPERROR = 42000 = 001397
MAPERROR = 42000 = 001422
MAPERROR = 42000 = 001423
MAPERROR = 42000 = 001424
MAPERROR = 42000 = 020142
MAPERROR = 42000 = 036010
MAPERROR = 42000 = 950072
MAPERROR = 42000 = 950076
MAPERROR = 42000 = 950078
MAPERROR = 42000 = 950131
MAPERROR = 42000 = 950303
MAPERROR = 42000 = 950304
MAPERROR = 42000 = 950305
MAPERROR = 42000 = 950306
MAPERROR = 42000 = 950338
MAPERROR = 42000 = 950343
MAPERROR = 42000 = 950350
MAPERROR = 42000 = 950352
MAPERROR = 42000 = 950361
MAPERROR = 42000 = 950362
MAPERROR = 42000 = 950365
MAPERROR = 42000 = 950391
MAPERROR = 42000 = 950392
MAPERROR = 42000 = 950393
MAPERROR = 42000 = 950394
MAPERROR = 42000 = 950395
MAPERROR = 42000 = 950398
MAPERROR = 42000 = 950405
MAPERROR = 42000 = 950406
MAPERROR = 42000 = 950407
MAPERROR = 42000 = 950408
MAPERROR = 42000 = 950409
MAPERROR = 42000 = 950534
MAPERROR = 42000 = 950538
MAPERROR = 42000 = 950539
MAPERROR = 42000 = 950540
MAPERROR = 42000 = 950541
MAPERROR = 42000 = 950546
MAPERROR = 42000 = 950548
MAPERROR = 42000 = 950563
MAPERROR = 42000 = 950588
MAPERROR = 42000 = 950590
MAPERROR = 42000 = 950607
MAPERROR = 42000 = 950609

Yes

Table D-1. Extended Parameters (Continued)

Parameter Name Description Modifiable

D-4 UniVerse BASIC SQL Client Interface Guide

MAPERROR
(continued)

MAPERROR = S0001 = 950458
MAPERROR = S0001 = 950459
MAPERROR = S0001 = 950528
MAPERROR = S0001 = 950529
MAPERROR = S0002 = 950311
MAPERROR = S0002 = 950313
MAPERROR = S0002 = 950316
MAPERROR = S0002 = 950390
MAPERROR = S0002 = 950455
MAPERROR = S0002 = 950545
MAPERROR = S0002 = 950596
MAPERROR = S0002 = 950597
MAPERROR = S0002 = 950598
MAPERROR = S0002 = 950599
MAPERROR = S0021 = 950416
MAPERROR = S0021 = 950570
MAPERROR = S0022 = 950418
MAPERROR = S0022 = 950425
MAPERROR = S0022 = 950428
MAPERROR = S0022 = 950522
MAPERROR = S0022 = 950523
MAPERROR = S1008 = 50003

Yes

ODBC None No

MARKERNAME Set to YES if data source uses names instead of
question marks for parameter markers.
Defaults: UNIVERSE YES

ODBC YES

No

MAXCHAR Maximum width of the data source’s character data
type.
Defaults: UNIVERSE N/A

ODBC 255

Yes

MAXFETCHBUFF For UniVerse servers only. Maximum buffer size
allocated on the server to hold data rows. The
server usually fills this buffer with as many rows as
possible before sending data to the client. If any sin-
gle row exceeds the length of MAXFETCHBUFF,
SQLFetch fails, and you should increase the value
of this parameter.
Default: UNIVERSE 8192 bytes

Yes

Table D-1. Extended Parameters (Continued)

Parameter Name Description Modifiable

UniVerse Extended Parameters D-5

MAXFETCHCOLS For UniVerse servers only. Maximum number of
column values the server can put in the buffer
before sending it to the client. If the number of col-
umns in the result set exceeds the number specified
by MAXFETCHCOLS, SQLFetch fails, and you
should increase the value of this parameter.
Default: UNIVERSE 400 column values

Yes

MAXLONGVARCHAR Yes
Maximum width of the data source’s long character
varying data type.
Defaults: UNIVERSE N/A

ODBC 4,096

MAXVARCHAR Maximum width of the data source’s character
varying data type.
Defaults: UNIVERSE N/A

ODBC 255

Yes

MONEY Set to YES if data source reports if a column is a
money data type.
Defaults: UNIVERSE NO

ODBC NO

No

NLSMAP For UniVerse servers only. Name of the server’s
NLS map table.

Yes

NLSLCALL For UniVerse servers only. Slash-separated list of
five locales to use for each of the five locale catego-
ries.

Yes

NLSLCCOLLATE For UniVerse servers only. Name of the locale
whose sort order to use.

Yes

NLSLCCTYPE For UniVerse servers only. Name of the locale
whose character type to use.

Yes

NLSLOCALE For UniVerse servers only. Name of the locale to use
for all locale categories.

Yes

NLSLCMONETARY
For UniVerse servers only. Name of the locale
whose monetary conventions to use.

Yes

NLSLCNUMERIC For UniVerse servers only. Name of the locale
whose numeric conventions to use.

Yes

NLSLCTIME For UniVerse servers only. Name of the locale
whose time conventions to use.

Yes

Table D-1. Extended Parameters (Continued)

Parameter Name Description Modifiable

D-6 UniVerse BASIC SQL Client Interface Guide

NULLABLE Set to YES if data source reports how a column han-
dles SQL null values.
Defaults: UNIVERSE YES

ODBC YES

No

PRECISION Set to YES if data source reports a column’s preci-
sion.
Defaults: UNIVERSE YES

ODBC YES

No

REALPREC Precision for SQL_REAL data. Represents the num-
ber of digits an SQL_REAL value can have.
Defaults: UNIVERSE N/A

ODBC 38

Yes

SCALE Set to YES if data source reports a column’s scale.
Defaults: UNIVERSE YES

ODBC YES

No

SEARCH Set to YES if data source can report a column’s dis-
position in a WHERE clause.
Defaults: UNIVERSE YES

ODBC Not used in this release.

No

SMINTPREC Precision for SQL_SMALLINT data. Represents the
number of digits an SQL_SMALLINT value can
have.
Defaults: UNIVERSE N/A

ODBC 38

Yes

TYPENAME Set to YES if data source can report the data
source’s data type name for a column.
Defaults: UNIVERSE YES

ODBC YES

No

UNSIGNED Set to YES if data source can report if a column is
unsigned.
Defaults: UNIVERSE YES

ODBC YES

No

UPDATE Set to YES if data source can report if a column is
updatable.
Defaults: UNIVERSE YES

ODBC YES

No

Table D-1. Extended Parameters (Continued)

Parameter Name Description Modifiable

UniVerse Extended Parameters D-7

The parameters in Table D-2 control internal aspects of the software’s behavior
with respect to transaction control. Do not modify them without specific instruc-
tions to do so from Ardent support personnel.

Table D-2. Transaction Parameters

Parameter Name Description

TXBEHAVIOR Defaults: UNIVERSE 1
ODBC 1

TXCOMMIT Defaults: UNIVERSE empty
ODBC empty

TXROLL Defaults: UNIVERSE empty
ODBC empty

TXSTART Defaults: UNIVERSE empty
ODBC empty

USETGITX Defaults: UNIVERSE NO
ODBC NO

D-8 UniVerse BASIC SQL Client Interface Guide

The ODBC.H File E-1

E
The ODBC.H File

This appendix lists the contents of the ODBC.H file. The ODBC.H file defines the
values of column attributes.

**
*
* Header file for ODBC BASIC programs
*
* Module %M% Version %I% Date %H%
*
* (c) Copyright 1998 Ardent Software Inc. - All Rights Reserved
* This is unpublished proprietary source code of Ardent Software Inc.
* The copyright notice above does not evidence any actual or intented
* publication of such source code.
*
**

* SQL Error RETCODES and defines.

EQU SQL.ERROR TO -1
EQU SQL.INVALID.HANDLE TO -2
EQU SQL.NEED.DATA TO 99
EQU SQL.NO.DATA.FOUND TO 100
EQU SQL.SUCCESS TO 0
EQU SQL.SUCCESS.WITH.INFO TO 1

EQU SQL.NULL.HENV TO -1
EQU SQL.NULL.HDBC TO -1
EQU SQL.NULL.HSTMT TO -1

EQU SQL.NULL.DATA TO -1

* SQLColAttributes defines

EQU SQL.COLUMN.COUNT TO 1
EQU SQL.COLUMN.NAME TO 2
EQU SQL.COLUMN.TYPE TO 3

E-2 UniVerse BASIC SQL Client Interface Guide

EQU SQL.COLUMN.LENGTH TO 4
EQU SQL.COLUMN.PRECISION TO 5
EQU SQL.COLUMN.SCALE TO 6
EQU SQL.COLUMN.DISPLAYSIZE TO 7
EQU SQL.COLUMN.DISPLAY.SIZE TO 7
EQU SQL.COLUMN.NULLABLE TO 8
EQU SQL.COLUMN.UNSIGNED TO 9
EQU SQL.COLUMN.MONEY TO 10
EQU SQL.COLUMN.UPDATABLE TO 11
EQU SQL.COLUMN.AUTO.INCREMENT TO 12
EQU SQL.COLUMN.CASE.SENSITIVE TO 13
EQU SQL.COLUMN.SEARCHABLE TO 14
EQU SQL.COLUMN.TYPE.NAME TO 15
EQU SQL.COLUMN.TABLE.NAME TO 16
EQU SQL.COLUMN.OWNER.NAME TO 17
EQU SQL.COLUMN.QUALIFIER.NAME TO 18
EQU SQL.COLUMN.LABEL TO 19
EQU SQL.COLUMN.MULTIVALUED TO 1001
EQU SQL.COLUMN.FORMAT TO 1002
EQU SQL.COLUMN.CONVERSION TO 1003
EQU SQL.COLUMN.PRINT.RESULT TO 1004

* SQLColAttributes subdefines for SQL.COLUMN.UPDATABLE

EQU SQL.ATTR.READONLY TO 0
EQU SQL.ATTR.WRITE TO 1
EQU SQL.ATTR.READWRITE.UNKNOWN TO 2

* SQLColAttributes subdefines for SQL.COLUMN.SEARCHABLE

EQU SQL.UNSEARCHABLE TO 0
EQU SQL.LIKE.ONLY TO 1
EQU SQL.ALL.EXCEPT.LIKE TO 2
EQU SQL.SEARCHABLE TO 3

* SQLSetConnectOption defines

EQU SQL.AUTOCOMMIT TO 102
EQU SQL.USE.ODBC.PRECISION TO 999
EQU SQL.TRUNC.ROUND TO 998
EQU SQL.SEND.TRUNC.ROUND TO 997
EQU SQL.OS.UID TO 996
EQU SQL.OS.PWD TO 995
EQU SQL.DATEFORM TO 994
EQU SQL.DATEPREC TO 993

EQU SQL.AUTOCOMMIT.OFF TO 0
EQU SQL.AUTOCOMMIT.ON TO 1

EQU SQL.EMPTY.NULL TO 1003
EQU SQL.EMPTY.NULL.ON TO 1

The ODBC.H File E-3

EQU SQL.EMPTY.NULL.OFF TO 0

EQU SQL.TX.PRIVATE TO 1004
EQU SQL.TX.PRIVATE.ON TO 1
EQU SQL.TX.PRIVATE.OFF TO 0

EQU SQL.UVNLS.MAP TO 1005
EQU SQL.UVNLS.LOCALE TO 1006
EQU SQL.UVNLS.LC.TIME TO 1007
EQU SQL.UVNLS.LC.NUMERIC TO 1008
EQU SQL.UVNLS.LC.MONETARY TO 1009
EQU SQL.UVNLS.LC.CTYPE TO 1010
EQU SQL.UVNLS.LC.COLLATE TO 1011
EQU SQL.UVNLS.LC.ALL TO 1012

EQU SQL.UVNLS.SQL.NULL TO 1013
EQU SQL.UVNLS.TEXT.MARK TO 1014
EQU SQL.UVNLS.SUBVALUE.MARK TO 1015
EQU SQL.UVNLS.VALUE.MARK TO 1016
EQU SQL.UVNLS.FIELD.MARK TO 1017
EQU SQL.UVNLS.ITEM.MARK TO 1018
EQU SQL.LIC.DEV.SUBKEY TO 1019

* SQLFreeStmt option defines

EQU SQL.CLOSE TO 1
EQU SQL.DROP TO 2
EQU SQL.UNBIND TO 3
EQU SQL.RESET.PARAMS TO 4

* Define all SQL data types
* and those that we support

EQU SQL.CHAR TO 1
EQU SQL.NUMERIC TO 2
EQU SQL.DECIMAL TO 3
EQU SQL.INTEGER TO 4
EQU SQL.SMALLINT TO 5
EQU SQL.FLOAT TO 6
EQU SQL.REAL TO 7
EQU SQL.DOUBLE TO 8
EQU SQL.DATE TO 9
EQU SQL.TIME TO 10
EQU SQL.TIMESTAMP TO 11
EQU SQL.VARCHAR TO 12
EQU SQL.LONGVARCHAR TO -1
EQU SQL.BINARY TO -2
EQU SQL.VARBINARY TO -3
EQU SQL.LONGVARBINARY TO -4
EQU SQL.BIGINT TO -5

E-4 UniVerse BASIC SQL Client Interface Guide

EQU SQL.TINYINT TO -6
EQU SQL.BIT TO -7
EQU SQL.WCHAR TO -8
EQU SQL.WVARCHAR TO -9
EQU SQL.WLONGVARCHAR TO -10
EQU NUM.SQL.TYPES TO 22

* Define ODBC conception of display size
* for the various data types

EQU SQL.CHAR.DSPSIZE TO 0
EQU SQL.VARCHAR.DSPSIZE TO 0
EQU SQL.DECIMAL.DSPSIZE TO 2
EQU SQL.NUMERIC.DSPSIZE TO 2
EQU SQL.SMALLINT.DSPSIZE TO 6
EQU SQL.INTEGER.DSPSIZE TO 11
EQU SQL.REAL.DSPSIZE TO 13
EQU SQL.FLOAT.DSPSIZE TO 22
EQU SQL.DOUBLE.DSPSIZE TO 22
EQU SQL.DATE.DSPSIZE TO 10
EQU SQL.TIME.DSPSIZE TO 8

* Define ODBC conception of precision
* for the various data types

EQU SQL.CHAR.PRECISION TO 254
EQU SQL.VARCHAR.PRECISION TO 254
EQU SQL.DECIMAL.PRECISION TO 15
EQU SQL.NUMERIC.PRECISION TO 15
EQU SQL.SMALLINT.PRECISION TO 5
EQU SQL.INTEGER.PRECISION TO 10
EQU SQL.REAL.PRECISION TO 7
EQU SQL.FLOAT.PRECISION TO 15
EQU SQL.DOUBLE.PRECISION TO 15
EQU SQL.DATE.PRECISION TO 10
EQU SQL.TIME.PRECISION TO 8

* Valid BASIC data types

EQU SQL.B.BASIC TO 100
EQU SQL.B.INTDATE TO 101
EQU SQL.B.NUMBER TO 102
EQU SQL.B.INTTIME TO 103
EQU SQL.B.CHAR TO 1
EQU SQL.B.DEFAULT TO 99

* Define return valued for
* Describe and ColAttributes

EQU SQL.NO.NULLS TO 0

The ODBC.H File E-5

EQU SQL.NULLABLE TO 1
EQU SQL.NULLABLE.UNKNOWN TO 2

* Define parameter types for SQLBindParameter (SQLSetParam)

EQU SQL.PARAM.INPUT TO 1
EQU SQL.PARAM.INPUT.OUTPUT TO 2
EQU SQL.PARAM.OUTPUT TO 4

* DTM Added for BCI/Datastage - SQLGetInfo

EQU SQL.ACTIVE.CONNECTIONS TO 0
EQU SQL.ACTIVE.STATEMENTS TO 1
EQU SQL.DATA.SOURCE.NAME TO 2
EQU SQL.DRIVER.HDBC TO 3
EQU SQL.DRIVER.HENV TO 4
EQU SQL.DRIVER.HSTMT TO 5
EQU SQL.DRIVER.NAME TO 6
EQU SQL.DRIVER.VER TO 7
EQU SQL.FETCH.DIRECTION TO 8
EQU SQL.ODBC.API.CONFORMANCE TO 9
EQU SQL.ODBC.VER TO 10
EQU SQL.ROW.UPDATES TO 11
EQU SQL.ODBC.SAG.CLI.CONFORMANCE TO 12
EQU SQL.SERVER.NAME TO 13
EQU SQL.SEARCH.PATTERN.ESCAPE TO 14
EQU SQL.ODBC.SQL.CONFORMANCE TO 15
EQU SQL.DATABASE.NAME TO 16
EQU SQL.DBMS.NAME TO 17
EQU SQL.DBMS.VER TO 18
EQU SQL.ACCESSIBLE.TABLES TO 19
EQU SQL.ACCESSIBLE.PROCEDURES TO 20
EQU SQL.PROCEDURES TO 21
EQU SQL.CONCAT.NULL.BEHAVIOR TO 22
EQU SQL.CURSOR.COMMIT.BEHAVIOR TO 23
EQU SQL.CURSOR.ROLLBACK.BEHAVIOR TO 24
EQU SQL.DATA.SOURCE.READ.ONLY TO 25
EQU SQL.DEFAULT.TXN.ISOLATION TO 26
EQU SQL.EXPRESSIONS.IN.ORDERBY TO 27
EQU SQL.IDENTIFIER.CASE TO 28
EQU SQL.IDENTIFIER.QUOTE.CHAR TO 29
EQU SQL.MAX.COLUMN.NAME.LEN TO 30
EQU SQL.MAX.CURSOR.NAME.LEN TO 31
EQU SQL.MAX.OWNER.NAME.LEN TO 32
EQU SQL.MAX.PROCEDURE.NAME.LEN TO 33
EQU SQL.MAX.QUALIFIER.NAME.LEN TO 34
EQU SQL.MAX.TABLE.NAME.LEN TO 35
EQU SQL.MULT.RESULT.SETS TO 36
EQU SQL.MULTIPLE.ACTIVE.TXN TO 37
EQU SQL.OUTER.JOINS TO 38

E-6 UniVerse BASIC SQL Client Interface Guide

EQU SQL.OWNER.TERM TO 39
EQU SQL.PROCEDURE.TERM TO 40
EQU SQL.QUALIFIER.NAME.SEPARATOR TO 41
EQU SQL.QUALIFIER.TERM TO 42
EQU SQL.SCROLL.CONCURRENCY TO 43
EQU SQL.SCROLL.OPTIONS TO 44
EQU SQL.TABLE.TERM TO 45
EQU SQL.TXN.CAPABLE TO 46
EQU SQL.USER.NAME TO 47
EQU SQL.CONVERT.FUNCTIONS TO 48
EQU SQL.NUMERIC.FUNCTIONS TO 49
EQU SQL.STRING.FUNCTIONS TO 50
EQU SQL.SYSTEM.FUNCTIONS TO 51
EQU SQL.TIMEDATE.FUNCTIONS TO 52
EQU SQL.CONVERT.BIGINT TO 53
EQU SQL.CONVERT.BINARY TO 54
EQU SQL.CONVERT.BIT TO 55
EQU SQL.CONVERT.CHAR TO 56
EQU SQL.CONVERT.DATE TO 57
EQU SQL.CONVERT.DECIMAL TO 58
EQU SQL.CONVERT.DOUBLE TO 59
EQU SQL.CONVERT.FLOAT TO 60
EQU SQL.CONVERT.INTEGER TO 61
EQU SQL.CONVERT.LONGVARCHAR TO 62
EQU SQL.CONVERT.NUMERIC TO 63
EQU SQL.CONVERT.REAL TO 64
EQU SQL.CONVERT.SMALLINT TO 65
EQU SQL.CONVERT.TIME TO 66
EQU SQL.CONVERT.TIMESTAMP TO 67
EQU SQL.CONVERT.TINYINT TO 68
EQU SQL.CONVERT.VARBINARY TO 69
EQU SQL.CONVERT.VARCHAR TO 70
EQU SQL.CONVERT.LONGVARBINARY TO 71
EQU SQL.TXN.ISOLATION.OPTION TO 72
EQU SQL.ODBC.SQL.OPT.IEF TO 73
EQU SQL.CORRELATION.NAME TO 74
EQU SQL.NON.NULLABLE.COLUMNS TO 75
EQU SQL.DRIVER.HLIB TO 76
EQU SQL.DRIVER.ODBC.VER TO 77
EQU SQL.LOCK.TYPES TO 78
EQU SQL.POS.OPERATIONS TO 79
EQU SQL.POSITIONED.STATEMENTS TO 80
EQU SQL.GETDATA.EXTENSIONS TO 81
EQU SQL.BOOKMARK.PERSISTENCE TO 82
EQU SQL.STATIC.SENSITIVITY TO 83
EQU SQL.FILE.USAGE TO 84
EQU SQL.NULL.COLLATION TO 85
EQU SQL.ALTER.TABLE TO 86
EQU SQL.COLUMN.ALIAS TO 87
EQU SQL.GROUP.BY TO 88

The ODBC.H File E-7

EQU SQL.KEYWORDS TO 89
EQU SQL.ORDER.BY.COLUMNS.IN.SELECT TO 90
EQU SQL.OWNER.USAGE TO 91
EQU SQL.QUALIFIER.USAGE TO 92
EQU SQL.QUOTED.IDENTIFIER.CASE TO 93
EQU SQL.SPECIAL.CHARACTERS TO 94
EQU SQL.SUBQUERIES TO 95
EQU SQL.UNION TO 96
EQU SQL.MAX.COLUMNS.IN.GROUP.BY TO 97
EQU SQL.MAX.COLUMNS.IN.INDEX TO 98
EQU SQL.MAX.COLUMNS.IN.ORDER.BY TO 99
EQU SQL.MAX.COLUMNS.IN.SELECT TO 100
EQU SQL.MAX.COLUMNS.IN.TABLE TO 101
EQU SQL.MAX.INDEX.SIZE TO 102
EQU SQL.MAX.ROW.SIZE.INCLUDES.LONG TO 103
EQU SQL.MAX.ROW.SIZE TO 104
EQU SQL.MAX.STATEMENT.LEN TO 105
EQU SQL.MAX.TABLES.IN.SELECT TO 106
EQU SQL.MAX.USER.NAME.LEN TO 107
EQU SQL.MAX.CHAR.LITERAL.LEN TO 108
EQU SQL.TIMEDATE.ADD.INTERVALS TO 109
EQU SQL.TIMEDATE.DIFF.INTERVALS TO 110
EQU SQL.NEED.LONG.DATA.LEN TO 111
EQU SQL.MAX.BINARY.LITERAL.LEN TO 112
EQU SQL.LIKE.ESCAPE.CLAUSE TO 113
EQU SQL.QUALIFIER.LOCATION TO 114

* SQL_ALTER_TABLE bitmasks *
EQU SQL.AT.ADD.COLUMN TO 1
EQU SQL.AT.DROP.COLUMN TO 2

* SQL_BOOKMARK_PERSISTENCE bitmasks *
EQU SQL.BP.CLOSE TO 1
EQU SQL.BP.DELETE TO 2
EQU SQL.BP.DROP TO 4
EQU SQL.BP.TRANSACTION TO 8
EQU SQL.BP.UPDATE TO 16
EQU SQL.BP.OTHER.HSTMT TO 32
EQU SQL.BP.SCROLL TO 64

* SQL_CONCAT_NULL_BEHAVIOR values *
EQU SQL.CB.NULL TO 0
EQU SQL.CB.NON.NULL TO 1

* SQL_CURSOR_COMMIT_BEHAVIOR values *
* SQL_CURSOR_ROLLBACK_BEHAVIOR values *
EQU SQL.CB.DELETE TO 0
EQU SQL.CB.CLOSE TO 1
EQU SQL.CB.PRESERVE TO 2

E-8 UniVerse BASIC SQL Client Interface Guide

* SQL_CORRELATION_NAME values *
EQU SQL.CN.NONE TO 0
EQU SQL.CN.DIFFERENT TO 1
EQU SQL.CN.ANY TO 2

* SQL_CONVERT_<.> bitmasks *
EQU SQL.CVT.CHAR TO 1
EQU SQL.CVT.NUMERIC TO 2
EQU SQL.CVT.DECIMAL TO 4
EQU SQL.CVT.INTEGER TO 8
EQU SQL.CVT.SMALLINT TO 16
EQU SQL.CVT.FLOAT TO 32
EQU SQL.CVT.REAL TO 64
EQU SQL.CVT.DOUBLE TO 128
EQU SQL.CVT.VARCHAR TO 256
EQU SQL.CVT.LONGVARCHAR TO 512
EQU SQL.CVT.BINARY TO 1024
EQU SQL.CVT.VARBINARY TO 2048
EQU SQL.CVT.BIT TO 4096
EQU SQL.CVT.TINYINT TO 8192
EQU SQL.CVT.BIGINT TO 16384
EQU SQL.CVT.DATE TO 32768
EQU SQL.CVT.TIME TO 65536
EQU SQL.CVT.TIMESTAMP TO 131072
EQU SQL.CVT.LONGVARBINARY TO 262144

* SQL_FETCH_DIRECTION bitmask *
EQU SQL.FD.FETCH.NEXT TO 1
EQU SQL.FD.FETCH.FIRST TO 2
EQU SQL.FD.FETCH.LAST TO 4
EQU SQL.FD.FETCH.PRIOR TO 8
EQU SQL.FD.FETCH.ABSOLUTE TO 16
EQU SQL.FD.FETCH.RELATIVE TO 32
EQU SQL.FD.FETCH.RESUME TO 64
EQU SQL.FD.FETCH.BOOKMARK TO 128

* SQL_FILE_USAGE values *
EQU SQL.FILE.NOT.SUPPORTED TO 0
EQU SQL.FILE.TABLE TO 1
EQU SQL.FILE.QUALIFIER TO 2

* SQL_CONVERT_FUNCTIONS bitmask *
EQU SQL.FN.CVT.CONVERT TO 1

* SQL_NUMERIC_FUNCTIONS bitmask *
EQU SQL.FN.NUM.ABS TO 1
EQU SQL.FN.NUM.ACOS TO 2
EQU SQL.FN.NUM.ASIN TO 4
EQU SQL.FN.NUM.ATAN TO 8
EQU SQL.FN.NUM.ATAN2 TO 16

The ODBC.H File E-9

EQU SQL.FN.NUM.CEILING TO 32
EQU SQL.FN.NUM.COS TO 64
EQU SQL.FN.NUM.COT TO 128
EQU SQL.FN.NUM.EXP TO 256
EQU SQL.FN.NUM.FLOOR TO 512
EQU SQL.FN.NUM.LOG TO 1024
EQU SQL.FN.NUM.MOD TO 2048
EQU SQL.FN.NUM.SIGN TO 4096
EQU SQL.FN.NUM.SIN TO 8192
EQU SQL.FN.NUM.SQRT TO 16384
EQU SQL.FN.NUM.TAN TO 32768
EQU SQL.FN.NUM.PI TO 65536
EQU SQL.FN.NUM.RAND TO 131072
EQU SQL.FN.NUM.DEGREES TO 262144
EQU SQL.FN.NUM.LOG10 TO 524288
EQU SQL.FN.NUM.POWER TO 1048576
EQU SQL.FN.NUM.RADIANS TO 2097152
EQU SQL.FN.NUM.ROUND TO 4194304
EQU SQL.FN.NUM.TRUNCATE TO 8388608

* SQL_STRING_FUNCTIONS bitmask *
EQU SQL.FN.STR.CONCAT TO 1
EQU SQL.FN.STR.INSERT TO 2
EQU SQL.FN.STR.LEFT TO 4
EQU SQL.FN.STR.LTRIM TO 8
EQU SQL.FN.STR.LENGTH TO 16
EQU SQL.FN.STR.LOCATE TO 32
EQU SQL.FN.STR.LCASE TO 64
EQU SQL.FN.STR.REPEAT TO 128
EQU SQL.FN.STR.REPLACE TO 256
EQU SQL.FN.STR.RIGHT TO 512
EQU SQL.FN.STR.RTRIM TO 1024
EQU SQL.FN.STR.SUBSTRING TO 2048
EQU SQL.FN.STR.UCASE TO 4096
EQU SQL.FN.STR.ASCII TO 8192
EQU SQL.FN.STR.CHAR TO 16384
EQU SQL.FN.STR.DIFFERENCE TO 32768
EQU SQL.FN.STR.LOCATE.2 TO 65536
EQU SQL.FN.STR.SOUNDEX TO 131072
EQU SQL.FN.STR.SPACE TO 262144

* SQL_SYSTEM_FUNCTIONS bitmask *
EQU SQL.FN.SYS.USERNAME TO 1
EQU SQL.FN.SYS.DBNAME TO 2
EQU SQL.FN.SYS.IFNULL TO 4

* SQL_TIMEDATE bitmask *
EQU SQL.FN.TD.NOW TO 1
EQU SQL.FN.TD.CURDATE TO 2
EQU SQL.FN.TD.DAYOFMONTH TO 4

E-10 UniVerse BASIC SQL Client Interface Guide

EQU SQL.FN.TD.DAYOFWEEK TO 8
EQU SQL.FN.TD.DAYOFYEAR TO 16
EQU SQL.FN.TD.MONTH TO 32
EQU SQL.FN.TD.QUARTER TO 64
EQU SQL.FN.TD.WEEK TO 128
EQU SQL.FN.TD.YEAR TO 256
EQU SQL.FN.TD.CURTIME TO 512
EQU SQL.FN.TD.HOUR TO 1024
EQU SQL.FN.TD.MINUTE TO 2048
EQU SQL.FN.TD.SECOND TO 4096
EQU SQL.FN.TD.TIMESTAMPADD TO 8192
EQU SQL.FN.TD.TIMESTAMPDIFF TO 16384
EQU SQL.FN.TD.DAYNAME TO 32768
EQU SQL.FN.TD.MONTHNAME TO 65536

* SQL_TIMEDATE_ADD_INTERVALS bitmask *
* SQL_TIMEDATE_DIFF_INTERVALS bitmask *
EQU SQL.FN.TSI.FRAC.SECOND TO 1
EQU SQL.FN.TSI.SECOND TO 2
EQU SQL.FN.TSI.MINUTE TO 4
EQU SQL.FN.TSI.HOUR TO 8
EQU SQL.FN.TSI.DAY TO 16
EQU SQL.FN.TSI.WEEK TO 32
EQU SQL.FN.TSI.MONTH TO 64
EQU SQL.FN.TSI.QUARTER TO 128
EQU SQL.FN.TSI.YEAR TO 256

* SQL_GROUP_BY values *
EQU SQL.GB.NOT.SUPPORTED TO 0
EQU SQL.GB.GROUP.BY.EQUALS.SELECT TO 1
EQU SQL.GB.GROUP.BY.CONTAINS.SELECT TO 2
EQU SQL.GB.NO.RELATION TO 3

* SQL_GETDATA_EXTENSIONS values *
EQU SQL.GD.ANY.COLUMN TO 1
EQU SQL.GD.ANY.ORDER TO 2
EQU SQL.GD.BLOCK TO 4
EQU SQL.GD.BOUND TO 8

* SQL_IDENTIFIER_CASE values *
* SQL_QUOTED_IDENTIFIER values *
EQU SQL.IC.UPPER TO 1
EQU SQL.IC.LOWER TO 2
EQU SQL.IC.SENSITIVE TO 3
EQU SQL.IC.MIXED TO 4

* SQL_LOCK_TYPES bitmask *
EQU SQL.LCK.NO.CHANGE TO 1
EQU SQL.LCK.EXCLUSIVE TO 2
EQU SQL.LCK.UNLOCK TO 4

The ODBC.H File E-11

* SQL_NULL_COLLATION values *
EQU SQL.NC.HIGH TO 0
EQU SQL.NC.LOW TO 1
EQU SQL.NC.START TO 2
EQU SQL.NC.END TO 4

* SQL_NON_NULLABLE_COLUMNS values *
EQU SQL.NNC.NULL TO 0
EQU SQL.NNC.NON.NULL TO 1

* SQL_ODBC_API_CONFORMANCE *
EQU SQL.OAC.NONE TO 0
EQU SQL.OAC.LEVEL1 TO 1
EQU SQL.OAC.LEVEL2 TO 2

* SQL_ODBC_SQL_CONFORMANCE values *
EQU SQL.OSC.MINIMUM TO 0
EQU SQL.OSC.CORE TO 1
EQU SQL.OSC.EXTENDED TO 2

* SQL_ODBC_SAG_CLI_CONFORMANCE values *
EQU SQL.OSCC.NOT.COMPLIANT TO 0
EQU SQL.OSCC.COMPLIANT TO 1

* SQL_OWNER_USAGE bitmask *
EQU SQL.OU.DML.STATEMENTS TO 1
EQU SQL.OU.PROCEDURE.INVOCATION TO 2
EQU SQL.OU.TABLE.DEFINITION TO 4
EQU SQL.OU.INDEX.DEFINITION TO 8
EQU SQL.OU.PRIVILEGE.DEFINITION TO 16

* SQL_POS_OPERATIONS *
EQU SQL.POS.POSITION TO 1
EQU SQL.POS.REFRESH TO 2
EQU SQL.POS.UPDATE TO 4
EQU SQL.POS.DELETE TO 8
EQU SQL.POS.ADD TO 16

* SQL_POSITIONED_STATEMENTS bitmask *
EQU SQL.PS.POSITIONED.DELETE TO 1
EQU SQL.PS.POSITIONED.UPDATE TO 2
EQU SQL.PS.SELECT.FOR.UPDATE TO 4

* SQL_DEFAULT_TXN_ISOLATION bitmask *
* SQL_TXN_ISOLATION_OPTION bitmask *
EQU SQL.TXN.READ.UNCOMMITTED TO 1
EQU SQL.TXN.READ.COMMITTED TO 2
EQU SQL.TXN.REPEATABLE.READ TO 4
EQU SQL.TXN.SERIALIZABLE TO 8
EQU SQL.TXN.VERSIONING TO 16

E-12 UniVerse BASIC SQL Client Interface Guide

EQU SQL.TXN.CURRENT TO 42

* SQL_QUALIFIER_LOCATION values *
EQU SQL.QL.START TO 1
EQU SQL.QL.END TO 2

* SQL_QUALIFIER_USAGE bitmask *
EQU SQL.QU.DML.STATEMENTS TO 1
EQU SQL.QU.PROCEDURE.INVOCATION TO 2
EQU SQL.QU.TABLE.DEFINITION TO 4
EQU SQL.QU.INDEX.DEFINITION TO 8
EQU SQL.QU.PRIVILEGE.DEFINITION TO 16

* SQL_SCROLL_CONCURRENCY bitmask *
EQU SQL.SCCO.READ.ONLY TO 1
EQU SQL.SCCO.LOCK TO 2
EQU SQL.SCCO.OPT.ROWVER TO 4
EQU SQL.SCCO.OPT.VALUES TO 8

* SQL_SCROLL_OPTIONS bitmask *
EQU SQL.SO.FORWARD.ONLY TO 1
EQU SQL.SO.KEYSET.DRIVEN TO 2
EQU SQL.SO.DYNAMIC TO 4
EQU SQL.SO.MIXED TO 8
EQU SQL.SO.STATIC TO 16

* SQL_STATIC_SENSITIVITY bitmask *
EQU SQL.SS.ADDITIONS TO 1
EQU SQL.SS.DELETIONS TO 2
EQU SQL.SS.UPDATES TO 4

* SQL_SUBQUERIES bitmask *
EQU SQL.SQ.COMPARISON TO 1
EQU SQL.SQ.EXISTS TO 2
EQU SQL.SQ.IN TO 4
EQU SQL.SQ.QUANTIFIED TO 8
EQU SQL.SQ.CORRELATED.SUBQUERIES TO 16

* SQL_TXN_CAPABLE values *
EQU SQL.TC.NONE TO 0
EQU SQL.TC.DML TO 1
EQU SQL.TC.ALL TO 2
EQU SQL.TC.DDL.COMMIT TO 3
EQU SQL.TC.DDL.IGNORE TO 4

* SQL_UNION values *
EQU SQL.U.UNION TO 1
EQU SQL.U.UNION.ALL TO 2

* Additions for SQLSpecialColumns

The ODBC.H File E-13

EQU SQL.BEST.ROWID TO 1
EQU SQL.ROWVER TO 2
EQU SQL.SCOPE.CURROW TO 0
EQU SQL.SCOPE.TRANSACTION TO 1
EQU SQL.SCOPE.SESSION TO 2
EQU SQL.PC.UNKNOWN TO 0
EQU SQL.PC.PSEUDO TO 1
EQU SQL.PC.NOT.PSEUDO TO 2

* Additions for SQLStatistics
EQU SQL.INDEX.UNIQUE TO 0
EQU SQL.INDEX.ALL TO 1
EQU SQL.QUICK TO 0
EQU SQL.ENSURE TO 1
EQU SQL.TABLE.STAT TO 0
EQU SQL.INDEX.CLUSTERED TO 1
EQU SQL.INDEX.HASHED TO 2
EQU SQL.INDEX.OTHER TO 3

* Additions for SQLParamOptions
EQU SQL.PARAMOPTIONS.SET TO 0
EQU SQL.PARAMOPTIONS.READ TO 1

* Additions for SQLTransact
EQU SQL.COMMIT TO 1
EQU SQL.ROLLBACK TO 2

E-14 UniVerse BASIC SQL Client Interface Guide

Glossary-1

Glossary

API Application programming interface. A set of function calls
that provide services to application programs.

application
program

A user program that issues function calls to submit SQL state-
ments and retrieve results, and then processes those results.

association A group of related multivalued columns in a table. The first
value in any association column corresponds to the first value
of every other column in the association, the second value
corresponds to the second value, and so on. An association
can be thought of as a nested table. A multivalued column
that is not associated with other columns is treated as an asso-
ciation comprising one column.

autocommit mode A mode of database operation in which transactions are not
logged. Each update to a database is committed immediately.

binding The process of associating an attribute with an SQL statement,
such as associating parameters or columns with a statement.

CLI Call level interface. See API.

connection
environment

Memory allocated and initialized with data necessary to
describe and maintain a connection between the SQL Client
Interface and the data source. Several connection environ-
ments can connect to a single ODBC environment.

cursor A virtual pointer to the set of results produced by a query. The
SQL Client Interface cursor points to one row of data at a time.
An application can advance the cursor only one row at a time.

DDL Data definition language. A subset of SQL statements used for
creating, altering, and dropping schemas, tables, and views.

DLL Dynamic link library. A collection of functions linked together
into a unit that can be distributed to application developers.
When the program runs, the application attaches itself to the
DLL when the program calls one of the DLL functions.

Glossary-2 UniVerse BASIC SQL Client Interface Guide

DML Data manipulation language. A subset of SQL statements
used for retrieving, inserting, modifying, and deleting data.
These statements include SELECT, INSERT, UPDATE, and
DELETE.

data source The data you want to access, the DBMS it is associated with,
and the server the DBMS resides on. For example, a data
source ORA could refer to an ORACLE DBMS on node
SERVER1, with ORACLE SID ALPHA. ODBC data sources do
not contain user ID and password information.

driver A program that processes function calls, submits SQL
requests to a specific data source, and returns results to the
client application program.

driver manager A program that loads and initializes drivers on behalf of a
client application program.

dynamic
normalization

A mechanism for allowing first-normal-form data manipula-
tion language (DML) statements to access an association as a
virtual first-normal-form table.

embedded SQL An interface mechanism that includes SQL statements in
source code. The SQL statements are precompiled, converting
the embedded SQL statements into the language of the host
program.

environment
handle

A pointer to a data area that contains global information
concerning the state of the application, including the valid
connection handles and the current active connection handle.

handle A pointer to an underlying data structure.

isolation level A mechanism for separating a transaction from other transac-
tions running concurrently, so that no transaction affects any
of the others. There are five isolation levels, numbered 0
through 4.

manual-commit
mode

A mode of database operation in which transactions are
delimited by a BEGIN TRANSACTION statement and ended
by a COMMIT or ROLLBACK statement.

middleware Software that acts as a bridge between two different database
systems. The UniRPC is middleware for UniVerse and
UniData servers. Other servers use various ODBC drivers as
middleware.

Glossary-3

multivalued
column

A column that can contain more than one value for each row
in a table.

null value A special value representing an unknown value. Not the same
as 0 (zero), a blank, or an empty string.

ODBC Open Database Connectivity. The Microsoft version of the
SQL Access Group Call Level Interface (SAG CLI). Microsoft
adds extensions to the SAG CLI that target it at the Windows
marketplace.

ODBC driver Software that acts as a bridge between a client system and a
specific database system.

ODBC driver
manager

Software that fields all entry points defined by the ODBC
specification. It performs any common functions required by
all databases, then passes function calls to specific ODBC
drivers.

parameter marker A single ? (question mark) in an SQL statement, representing
a parameter or argument, where there would normally be a
constant. For each iterative execution of the statement, a new
value for the parameter marker is made available to the inter-
face.

precision The maximum number of digits defined for SQL data types.

prepared SQL
statement

An SQL statement that has been checked before being passed
to the server for execution.

programmatic SQL A subset of the SQL language. Programmatic SQL differs from
interactive SQL in that certain keywords and clauses used for
report formatting in interactive mode are not supported in
programmatic SQL.

result set A set of rows of data obtained via the SQLFetch call. A result
set is returned when an SQL SELECT statement is executed. It
is also returned by the SQLColumns and SQLTables calls.

SAG SQL access group. A consortium of database vendors
exploring database interoperability.

SAG CLI SQL access group call level interface. See ODBC.

scale The maximum number of digits to the right of the decimal
point.

Glossary-4 UniVerse BASIC SQL Client Interface Guide

single-valued
column

A column that can contain only one value for each row in a
table.

SQL Client Inter-
face environment

Memory allocated and initialized with data necessary to
describe all connections to data sources and all SQL state-
ments being executed at those data sources. All connection
environments and SQL statement environments are attached
to an SQL Client Interface environment.

SQL statement
environment

Memory allocated and initialized to let the software describe
all context of an SQL statement executed at a data source. An
SQL statement environment is attached to a connection envi-
ronment.

UCI Uni Call Interface. A C application programming interface
(API) that allows application programmers to write client
application programs that use SQL function calls to access
data in UniVerse databases.

UniRPC Remote procedure call. A UniVerse middleware facility that
receives requests from remote machines for services and that
starts those services.

unirpc The Windows NT service that handles calls to the server.

unirpcd The UNIX daemon that handles calls to the server.

unirpcservices The UniRPC services file, located on the server, which verifies
client requests for services.

uvodbc.config The client ODBC configuration file, which defines SQL client
connections to a server in terms of DBMS, network, service,
and host.

uvserver The UniVerse server process to which the client application
connects.

Index-1

Symbols

.A command 3-10

.BLOCK command 3-9, 3-10

.C command 3-10

.EXECUTE command 3-10

.INVERT command 3-10

.MVDISPLAY command 3-10

.NULL command 3-10

.PRINT command 3-10

.QUIT command 3-10

.RECALL command 3-10

.SAVE command 3-10

.TOP command 3-10

.UVOUT command 3-11

.VERBOSE command 3-11

.WIDTH command 3-11

.X command 3-11
/etc/hosts file 2-10
@EMPTY.NULL X-descriptor 7-60
@HDBC variable 7-10, 7-23, 7-28, 7-57
@HENV variable 7-28
@HSTMT variable 6-5, 6-11, 6-12, 7-11,

7-16, 7-34, 7-39, 7-48, 7-49, 7-56
closing 6-13

@TMP file 6-8

A

.A command 3-10
ABORT command 6-2
ABORT.LOGIN command 6-2
administering data sources 2-5
affected-row count 5-3, 5-4, 6-4, 6-5
allocating

connection environment 4-3, 7-8

ODBC environment 7-9
SQL Client Interface

environment 7-9
SQL statement environment 4-5,

7-10
ANALYZE.SHM command 6-2
API (application programming

interface) 1-1
definition Gl-1

associations, definition Gl-1
attributes, see columns
autocommit mode 3-1, 4-13

definition Gl-1
AUTOINC parameter D-1
AUTOLOGOUT command 6-2

B

BASIC API, see SQL Client Interface
BASIC functions 1-3, 7-1–7-75
BASIC procedures 6-3–6-13

compiling and cataloging 6-3
restrictions 6-12
SUBROUTINE statement 6-3

BASIC programs
as procedures 6-1
calling as procedures 5-1

BASIC subroutines 5-1
as procedures 6-1

BEGIN TRANSACTION
statement 4-13

BIGINT data type A-8
BIGINTPREC parameter D-1
binary, see data types

Index

Index-2 UniVerse BASIC SQL Client Interface Guide

binding
column results 4-8, 7-11
definition Gl-1

BIT data type A-2
.BLOCK command 3-9, 3-10
block mode 3-2, 3-9, 3-10, 3-17
BLOCK option 3-2, 3-9

C

.C command 3-10
CALL

command 6-2
call level interface, definition Gl-1
CALL statement 5-2, 5-3, 6-1

nested 6-12
calling procedures 5-1–5-4
case inversion 3-3
CASE parameter D-1
case-sensitivity 7-31, 7-53

data types 3-1
cataloging BASIC procedures 6-3
changing extended parameters 2-12,

2-13
CHAR data type 3-11, A-2
CHAR(128) 3-3
CHAR(253) 3-3
CHAR_MAX_LENGTH column

attribute 7-21
CHDIR command 6-2
CLEAN.ACCOUNT command 6-2
CLI, definition Gl-1
CLOSE statement 1-3
closing

@HSTMT variable 6-13
column results

see also columns
binding 4-8, 7-11
fetching 4-8, 7-12, 7-36
number of columns 4-8, 7-49
processing 4-8

COLUMN_NAME column
attribute 7-21

columns
see also column results
attributes 4-8, 7-17, E-1–E-13
data type 4-8, 7-25
display width 3-5, 3-11, 3-14
displaying attributes 3-4, 3-11, 3-13
getting descriptions 7-21
name 4-8, 7-25
null value 4-8, 7-25
precision 4-8, 7-25
scale 4-8, 7-25
SQL null 4-8
unbinding 7-39

commands
as procedures 6-1
calling as procedures 5-1

COMMIT statement 4-13
requesting for all SQL

statements 7-74
commit, two-phase protocol 4-13
COMO command 6-2
compiling BASIC procedures 6-3
configuration file 2-1–2-3, 3-8, 4-15

creating 2-5
maintaining 2-8

configuration, client system for NLS
server 2-4–2-5

configuring SQL Client Interface 2-1–
2-13

CONNECT command 1-3, 3-1–3-17
block mode 3-2, 3-9, 3-10, 3-17
examples 3-12–3-17
exiting 3-10
local commands 3-4, 3-9
options 3-2–3-5
output from SELECT

statements 3-4, 3-11, 3-15
syntax 3-2
transaction statements 3-1

Index-3

UniVerse output mode 3-11, 3-15
verbose mode 3-11, 3-13

connecting to data source 4-1
connection environment 4-1

allocating 4-3, 7-8
definition Gl-1
freeing 4-10, 7-37, 7-38

conversion, see data conversion
copying data source

specifications 2-10
count, affected row 5-3, 5-4, 6-4, 6-5
creating

configuration file 2-5
data sources 2-6

cursors 4-8, 7-36
closing 7-16, 7-32, 7-35, 7-39
definition Gl-1

D

data conversion A-1–A-15
BASIC data types to SQL data

types A-5–A-10
SQL data types to BASIC data

types A-11–A-15
SQL numeric data types to BASIC

data types A-13–A-14
SQL.CHAR to BASIC data

types A-12–??, A-13
SQL.DATE to BASIC data

types A-14
SQL.VARCHAR to BASIC data

types A-12–??, A-13
data definition statements in

procedures 6-5
Data Source Admin window 2-5
data source specifications 2-1

copying 2-10
defining 2-8, 2-9
deleting 2-10

data sources 1-1
administering 2-5

connecting to 4-1
creating 2-6
DBMS type 2-2
defining extended parameters 2-8
definition Gl-2
deleting 2-7
disconnecting from 4-10, 7-27, 7-37
error codes 7-28
extended parameters D-1–D-7
listing 2-9
logging in 3-5, 4-3, 7-23
modifying 2-7
name 2-1, 2-10
network host name 2-2
pathname 4-4
renaming 2-10
service name 2-2

DATA statements 6-2, 6-12
data types A-1–A-15

BIGINT A-8
binary
BIT A-2
case-sensitivity 3-1
CHAR 3-11, A-2
DATE 3-11, A-3, A-8
DECIMAL A-3, A-7
DOUBLE A-8
DOUBLE PRECISION A-3
FLOAT A-3, A-8
INTEGER A-3, A-8
NCHAR A-2
NUMERIC A-3, A-7
NVARCHAR A-2
REAL A-3, A-8
SMALLINT A-3, A-8
SQL.B.BASIC 7-13, A-2
SQL.B.BINARY 7-13, A-2
SQL.B.CHAR A-2
SQL.B.DEFAULT A-2
SQL.B.INTDATE 7-13, A-2
SQL.B.INTTIME 7-13, A-2
SQL.B.NUMBER A-2

Index-4 UniVerse BASIC SQL Client Interface Guide

SQL.BINARY 7-13, 7-18, 7-26, A-2,
A-3, A-7, A-13

SQL.CHAR A-2, A-12
SQL.DATE 7-13, A-3, A-15
SQL.DECIMAL 7-19, A-3, A-13
SQL.DOUBLE A-3, A-13
SQL.FLOAT A-3, A-13
SQL.INTEGER A-3, A-13
SQL.LONGVARBINARY 7-13,

A-3, A-13
SQL.LONGVARCHAR A-2, A-12
SQL.NUMERIC 7-19, A-3, A-13
SQL.REAL A-3, A-13
SQL.SMALLINT A-3, A-13
SQL.TIME 7-13, A-3
SQL.VARBINARY 7-13, A-3, A-13
SQL.VARCHAR A-2, A-12
SQL.WCHAR A-2, A-12
SQL.WLONGVARCHAR A-2,

A-12
SQL.WVARCHAR A-2, A-12
TIME A-3, A-9
TINYINT A-8
VARBIT A-3
VARCHAR 3-11, A-2

DATA_TYPE column attribute 7-21
DATE data type 3-11, A-3, A-8
DATEFORM parameter 7-15, D-1
DATEPREC parameter D-1
dates, internal format A-8, A-14
DBLPREC parameter D-2
DBMS types 2-2

extended parameters D-1–D-7
defining 2-12

listing 2-9, 2-12, 2-13
DDL statements, definition Gl-1
debugging procedures 6-13
DECIMAL data type A-3, A-7
default isolation levels 4-3
defining

data source specifications 2-8, 2-9

DBMS-type extended
parameters 2-12

extended parameters 2-8
DELETE statements

in procedures 6-5
deleting

data source specifications 2-10
data sources 2-7
extended parameters 2-12, 2-13

demonstration program 2-14–2-16,
B-1–B-9

diagnostics area, see SQL diagnostics
area

disconnecting from data source 4-10,
7-27, 7-37

display width, see columns
displaying

column attributes 3-4, 3-11, 3-13
environment variables in

RAID 4-17
errors 3-4, 3-11
multivalues 3-3
SQL statements 3-10

distributed transactions 4-13
DLL 1-4

definition Gl-1
DML statements, definition Gl-2
documentation conventions x–xi
DOUBLE data type A-8
DOUBLE PRECISION data type A-3
driver manager 1-1

definition Gl-2
drivers 1-1

definition Gl-2
obtaining general information 7-41

DSPSIZE parameter D-2
dynamic normalization,

definition Gl-2

Index-5

E

embedded SQL, definition Gl-2
END TRANSACTION statement 4-13
environment handles, definition Gl-2
environment variables

displaying in RAID 4-17
PATH 2-3

environments
connection 4-3, 7-8
ODBC 7-9
SQL Client Interface 7-9
SQL statement 4-5, 7-10

error codes 4-15, 7-28, C-1–C-3
UniVerse 5-4

error messages 4-15–4-17
errors 4-15–4-17, 6-5

displaying 3-4, 3-11
logging in 3-7
messages 5-4
sources 7-29, 7-30
SQL 6-10
status 7-28

.EXECUTE command 3-10
executing procedures 5-1–5-4
exiting CONNECT command 3-10
extended parameters 2-2, D-1–D-7

changing 2-12, 2-13
defining 2-8
deleting 2-12, 2-13
listing 2-12, 2-13
MAPERROR 4-15
transaction D-7

F

fetching column results 4-8, 7-12, 7-36
files

/etc/hosts 2-10
@TMP 6-8
ODBC.H E-1–E-13
unirpcservices 1-4

uvodbc.config 2-1–2-3, 2-5, 2-8, 3-8,
4-15

FLOAT data type A-3, A-8
FLOATPREC parameter D-2
freeing

connection environment 4-10, 7-37,
7-38

locks 7-16, 7-40
SQL Client Interface

environment 4-10, 7-38
SQL statement environment 4-9,

7-39
functions, see BASIC functions

G

GET.STACK command 6-2
GetDiagnostics function 7-5

H

handles
definition Gl-2
environment, definition Gl-2

host name, see network host name

I

I/O operations 1-3
ICONV function A-12
INFORMIX-OnLine 1-1
input in procedures 6-2, 6-12
INPUT statements 6-12
input variables, see variables
input, terminating 3-2, 3-8, 3-9, 3-10,

3-17
INSERT statements

in procedures 6-5
INTEGER data type A-3, A-8
interface, see SQL Client Interface,

CONNECT command
internal date format A-8, A-14

Index-6 UniVerse BASIC SQL Client Interface Guide

internal numeric format A-6, A-11
internal time format A-9, A-14
INTPREC parameter D-2
inversion, see case inversion
.INVERT command 3-10
INVERT option 3-3
isolation levels, definition Gl-2

J

justification 3-11

L

levels, see transaction levels
listing

data sources 2-9
DBMS types 2-9, 2-12, 2-13
extended parameters 2-12, 2-13

local commands 3-9
prefix character 3-4

locales 2-4, 4-3, 7-24
localhost network host name 1-4, 2-2,

2-10
locks

freeing 7-16, 7-40
preserving integrity 4-14

logging in
errors 3-7
to data source 3-5, 4-3, 7-23
to server operating system 3-5, 4-3,

7-58
to UniVerse 3-6, 3-7

login name, see user name
LOGON command 6-2
LOGOUT command 6-2
LOGTO command 6-2
LOGTO.ABORT command 6-2
loopback IP address 1-4, 2-2, 2-10
lowercase, see case inversion, case-

sensitivity

M

MAIL command 6-2
MAKE command 6-2
manual-commit mode, definition Gl-2
MAPERROR parameter 4-15, D-2, D-3
MARKERNAME parameter D-4
markers, see parameter markers
MAXCHAR parameter D-4
MAXFETCHBUFF parameter D-4

changing 2-2
MAXFETCHCOLS parameter D-5

changing 2-2
MAXLONGVARCHAR

parameter D-5
MAXVARCHAR parameter D-5
menus 6-2

Sql client administration 2-8
MESSAGE command 6-2
middleware, definition Gl-1
modifying data sources 2-7
MONEY parameter D-5
multicolumn result set 5-3, 6-4, 6-5, 6-7
multiple SELECT statements 3-2, 4-5,

7-33, 7-55
multivalues 4-8, 7-12, A-5, A-14

displaying 3-3
.MVDISPLAY command 3-10
MVDISPLAY option 3-3

N

National Language Support, see NLS
NCHAR data type A-2
nested CALL statements in

procedures 6-12
nested transactions 4-14
network host name 2-2, 2-10

localhost 1-4, 2-2, 2-10
loopback IP address 1-4, 2-2, 2-10

Index-7

NLS (National Language Support)
configuring client 2-4–2-5
locales 2-4, 4-3, 7-24

NLSDEFSRVLC parameter 4-4
NLSLCALL parameter D-5
NLSLCCOLLATE parameter 2-4, D-5
NLSLCCTYPE parameter 2-4, D-5
NLSLCMODE parameter 4-4
NLSLCMONETARY parameter 2-4,

D-5
NLSLCNUMERIC parameter 2-4, D-5
NLSLCTIME parameter 2-4, D-5
NLSLOCALE parameter 2-4, D-5
NLSMAP parameter D-5
NLSMODE parameter 4-4
NOTIFY command 6-2
.NULL command 3-10
NULL option 3-3
null value 7-25
NULLABLE

column attribute 7-22
parameter D-6

numeric data conversions 7-36
NUMERIC data type A-3, A-7
NUMERIC_PREC_RADIX column

attribute 7-22
NUMERIC_PRECISION column

attribute 7-21
NUMERIC_SCALE column

attribute 7-21
NVARCHAR data type A-2

O

ODBC 1-2
definition Gl-3

ODBC.H file E-1–E-13
Open Database Connectivity, see

ODBC
OPEN statement 1-3
ORACLE 1-1

output from SELECT statements 3-4,
3-11, 3-15

printing 3-10
output mode, see UniVerse: output

mode
output parameters 5-4, 6-3
output variables, see variables

P

paragraphs
as procedures 6-1
calling as procedures 5-1

parameter markers 4-6, 5-2, 6-3, 7-14,
7-31, 7-32, 7-34, 7-53, 7-54

definition Gl-3
values 5-1
variables 7-14

resetting 7-39
parameters

output 5-4, 6-3
PASSWD command 6-2
passwords 3-5, 4-3, 7-23, 7-58
PATH environment variable 2-3
pathname 4-4
PHANTOM command 6-2
PL/SQL blocks 3-9
precision 7-13, 7-18, 7-19, 7-25

definition Gl-3
PRECISION parameter D-6
prefix character 3-4
PREFIX option 3-4
prepared SQL statements,

definition Gl-3
.PRINT command 3-10
print result set 5-3, 5-4, 6-2, 6-4, 6-13
PRINT statements 6-13
procedures 3-2, 3-9, 3-17, 4-5, 5-1–5-4,

7-31, 7-33, 7-53, 7-55, 7-56
BASIC 6-3–6-13
and data definition statements 6-5
debugging 6-13

Index-8 UniVerse BASIC SQL Client Interface Guide

DELETE statements 6-5
INPUT statements 6-5
nested CALL statements in 6-12
processing results 5-2
restrictions in BASIC 6-12
and UniVerse commands 6-2, 6-12
and UniVerse menus 6-2
UPDATE statements 6-5
and user input 6-2, 6-12
writing 6-1–6-13

procs
as procedures 6-1
calling as procedures 5-1

programmatic SQL
definition Gl-3
error messages 4-15–4-17

programs
as procedures 6-1
calling as procedures 5-1

ProVerb procs
as procedures 6-1
calling as procedures 5-1

Q

.QUIT command 3-10
QUIT command 6-2

R

RADIX command 6-2
RAID 4-17
RAID command 6-2
READ statement 1-3
REAL data type A-3, A-8
REALPREC parameter D-6
.RECALL command 3-10
REFORMAT command 6-2
REMARKS column attribute 7-22
remote procedure call, see UniRPC
renaming data sources 2-10
restrictions in BASIC procedures 6-12

result sets 5-3, 7-12
definition Gl-3
multicolumn 5-3, 6-4, 6-5, 6-7
print 5-3, 5-4, 6-2, 6-4, 6-13

results
processing procedure 5-2
see also column results

return variables, see variables
ROLLBACK statement 4-13

requesting for all SQL
statements 7-74

rounding numeric data 7-36, A-5,
A-11, A-12

row count 4-8, 7-56
affected 5-3, 5-4, 6-4, 6-5

S

SAG (SQL access group),
definition Gl-3

.SAVE command 3-10
SAVE.STACK command 6-2
saving SQL statements 3-10
scale 7-13, 7-18, 7-19, 7-25

definition Gl-3
SCALE parameter D-6
schema name 4-4
SEARCH parameter D-6
SELECT statement

output 3-4, 3-11, 3-15
printing output 3-10

service name 2-2, 2-10
uvserver 2-2

SET.REMOTE.ID command 6-2
SetDiagnostics function 6-10, 6-11,

6-13, 7-6
SMALLINT data type A-3, A-8
SMINTPREC parameter D-6
SP.EDIT command 6-2
SP.TAPE command 6-2
SPOOL command 6-2
Sql client administration menu 2-8

Index-9

SQL Client Interface 4-1–4-18
administration menu, see Sql client

administration menu
configuring 2-1–2-13
configuring client for NLS

server 2-4–2-5
environment 4-1

allocating 7-9
definition Gl-4
freeing 4-10, 7-38

functions, see BASIC functions
SQL diagnostics area 6-11
SQL errors 6-10
SQL procedures, see procedures
SQL result sets, see result sets
SQL statement environment

allocating 4-5, 7-10
definition Gl-4
freeing 4-9, 7-39

SQL statements
displaying 3-10
executing 3-10, 3-11, 4-5, 7-31, 7-34,

7-54
preparing 7-34, 7-53
processing 4-5–4-12
saving 3-10
terminating input 3-2, 3-8, 3-9,

3-10, 3-17
SQL, embedded, definition Gl-2
SQL.AUTOCOMMIT option 7-57
SQL.B.BASIC data type 7-13, A-2
SQL.B.BINARY data type 7-13, 7-15,

A-2
SQL.B.CHAR data type A-2
SQL.B.DEFAULT data type A-2
SQL.B.INTDATE data type 7-13, 7-15,

A-2
SQL.B.INTTIME data type 7-13, 7-15,

A-2
SQL.B.NUMBER data type A-2

SQL.BINARY data type 7-12, 7-13,
7-15, 7-18, 7-26, A-2, A-3, A-7,
A-13

SQL.CHAR data type A-2, A-12
SQL.CLOSE option 7-39
SQL.COLUMN.AUTO.INCREMENT

column attribute 7-18
SQL.COLUMN.CASE.SENSITIVE

column attribute 7-18
SQL.COLUMN.CONVERSION

column attribute 7-19
SQL.COLUMN.COUNT column

attribute 7-18
SQL.COLUMN.DISPLAY.SIZEcolumn

attribute 7-18
SQL.COLUMN.FORMAT column

attribute 7-19
SQL.COLUMN.LABEL column

attribute 7-18
SQL.COLUMN.LENGTH column

attribute 7-18
SQL.COLUMN.MONEY column

attribute 7-20
SQL.COLUMN.MULTIVALUED

column attribute 7-12, 7-19
SQL.COLUMN.NAME column

attribute 7-18
SQL.COLUMN.NULLABLE column

attribute 7-18
SQL.COLUMN.OWNER.NAME

column attribute 7-20
SQL.COLUMN.PRECISION column

attribute 7-18
SQL.COLUMN.QUALIFIER.NAME

column attribute 7-20
SQL.COLUMN.SCALE column

attribute 7-18
SQL.COLUMN.SEARCHABLE

column attribute 7-18
SQL.COLUMN.TABLE.NAME

column attribute 7-18

Index-10 UniVerse BASIC SQL Client Interface Guide

SQL.COLUMN.TYPE column
attribute 7-19

SQL.COLUMN.TYPE.NAME column
attribute 7-19

SQL.COLUMN.UNSIGNED column
attribute 7-19

SQL.COLUMN.UPDATABLE column
attribute 7-19

SQL.DATE data type 7-13, 7-15, A-3,
A-15

SQL.DECIMAL data type 7-19, A-3,
A-13

SQL.DOUBLE data type A-3, A-13
SQL.DROP option 7-39
SQL.EMPTY.NULL option 7-57
SQL.ERROR return value 7-3
SQL.FLOAT data type A-3, A-13
SQL.INTEGER data type A-3, A-13
SQL.INVALID.HANDLE return

value 7-3
SQL.LONGVARBINARY data

type 7-12, 7-13, 7-15, A-3, A-13
SQL.LONGVARCHAR data type A-2,

A-12
SQL.NO.DATA.FOUND return

value 7-3
SQL.NUMERIC data type 7-19, A-3,

A-13
SQL.OS.PWD option 7-58
SQL.OS.UID option 7-58
SQL.PARAMOPTIONS.READ

option 7-50
SQL.PARAMOPTIONS.SET

option 7-50
SQL.PRINT.RESULT column

attribute 7-19
SQL.PRIVATE.TX option 7-58
SQL.REAL data type A-3, A-13
SQL.RESET.PARAMS option 7-39
SQL.SMALLINT data type A-3, A-13
SQL.SUCCESS return value 7-2

SQL.SUCCESS.WITH.INFO return
value 7-3

SQL.TIME data type 7-13, 7-15, A-3
SQL.TXN.ISOLATION option 7-58
SQL.UNBIND option 7-39
SQL.UVNLS.LC.ALL option 7-59
SQL.UVNLS.LC.COLLATE

option 7-59
SQL.UVNLS.LC.CTYPE option 7-59
SQL.UVNLS.LC.MONETARY

option 7-59
SQL.UVNLS.LC.NUMERIC

option 7-59
SQL.UVNLS.LC.TIME option 7-59
SQL.UVNLS.LOCALE option 7-59
SQL.VARBINARY data type 7-12,

7-13, 7-15, A-3, A-13
SQL.VARCHAR data type A-2, A-12
SQL.WCHAR data type A-2, A-12
SQL.WLONGVARCHAR data

type A-2, A-12
SQL.WVARCHAR data type A-2,

A-12
SQLAllocConnect function 4-3, 7-7
SQLAllocEnv function 4-3, 7-9
SQLAllocStmt function 4-5, 7-10
SQLBCIDEMO program 2-14–2-16,

B-1–B-9
SQLBindCol function 4-8, 5-3, 6-13,

7-11, 7-36, A-1, A-11
SQLBindParameter function 4-6, 4-7,

5-4, 7-13, 7-32, 7-54, A-1
SQLCancel function 7-16
SQLClearDiagnostics function 6-11
SQLColAttributes function 4-8, 5-3,

6-12, 7-17
SQLColumns function 7-21
SQLConnect function 4-3, 7-23

and transactions 7-24
SQLDescribeCol function 4-8, 6-12,

7-25

Index-11

SQLDisconnect function 4-10, 7-27
and transactions 7-27

SQLError function 4-15, 4-16, 5-4, 7-28
SQLExecDirect function 4-6, 5-2, 5-4,

6-10, 7-31
and transactions 4-14, 7-33

SQLExecute function 4-6, 5-2, 5-3, 5-4,
6-10, 7-34, 7-54

and transactions 4-14, 7-35
SQLFetch function 4-8, 5-3, 6-13, 7-12,

7-36
and transactions 4-14, 7-36

SQLFreeConnect function 4-10, 7-37
SQLFreeEnv function 4-10, 7-38
SQLFreeStmt function 4-9, 7-39
SQLGetInfo function 7-41
SQLGetTypeInfo function 7-45
SQLNumParams function 7-48
SQLNumResultCols function 4-8, 5-3,

6-12, 7-49
SQLParamOptions function 7-50
SQLPrepare function 4-6, 5-3, 7-34,

7-53
SQLRowCount function 4-8, 5-3, 5-4,

7-56
SQLSetConnectOption function 4-3,

7-57
SQLSetConnectOption settings

SQL.AUTOCOMMIT 7-57
SQL.EMPTY.NULL 7-57
SQL.OS.PWD 7-58
SQL.OS.UID 7-58
SQL.PRIVATE.TX 7-58
SQL.TXN.ISOLATION 7-58
SQL.UVNLS.LC.ALL 7-59
SQL.UVNLS.LC.COLLATE 7-59
SQL.UVNLS.LC.CTYPE 7-59
SQL.UVNLS.LC.MONETARY 7-5

9
SQL.UVNLS.LC.NUMERIC 7-59
SQL.UVNLS.LC.TIME 7-59
SQL.UVNLS.LOCALE 7-59

SQLSetParam function 7-62
SQLSpecialColumns function 7-63
SQLSTATE return codes 5-4
SQLSTATE values 4-16, C-1–C-3
SQLStatistics function 7-67
SQLTables function 7-72
SQLTransact function 7-74
SREFORMAT command 6-2
status variables, see variables
stored procedures, see procedures
stored sentences

as procedures 6-1
calling as procedures 5-1

SUBROUTINE statement 6-3
subroutines 5-1

as procedures 6-1
SYBASE 1-1

case-sensitivity 3-1
multiple SELECT statements 4-5

system requirements 1-3

T

T.BCK command 6-2
T.DUMP command 6-2
T.EOD command 6-2
T.FWD command 6-2
T.LOAD command 6-2
T.RDLBL command 6-2
T.READ command 6-2
T.REW command 6-2
T.UNLOAD command 6-2
T.WEOF command 6-2
T.WTLBL command 6-2
TABLE_NAME table attribute 7-21
TABLE_OWNER table attribute 7-21
TABLE_SCHEMA table attribute 7-21
TCP/IP 1-3, 2-2
TIME data type A-3, A-9
times, internal format A-9, A-14
TINYINT data type A-8
.TOP command 3-10

Index-12 UniVerse BASIC SQL Client Interface Guide

transaction levels 4-14
and SQLFetch function 7-36

transactions 4-13–4-14
active 7-24, 7-27
distributed 4-13
nested 4-14
parameters D-7
and SQLConnect function 7-24
and SQLDisconnect function 7-27
and SQLExecDirect function 4-14,

7-33
and SQLExecute function 4-14,

7-35
and SQLFetch function 4-14
statements 3-1, 4-13, 7-32, 7-35

truncating numeric data 7-36, A-11
two-phase commit protocol 4-13
TXBEHAVIOR parameter D-7
TXCOMMIT parameter D-7
TXROLL parameter D-7
TXSTART parameter D-7
TYPE_NAME column attribute 7-21
TYPENAME parameter D-6

U

UniRPC 3-5
definition Gl-3
services file, see unirpcservices file

unirpc service 1-4
unirpcd daemon 1-4

see also UniRPC
definition Gl-4

unirpcservices file 1-4
definition Gl-4

UniVerse
case-sensitivity 3-1
logging in 3-6, 3-7
output mode 3-11, 3-15
release, obtaining information 7-41

UniVerse commands
as procedures 6-1

calling as procedures 5-1
in procedures 6-2, 6-12

UniVerse error codes 5-4
UniVerse menus 6-2
UniVerse procedures, writing 6-1–6-13
UniVerse servers, definition Gl-4
UNSIGNED parameter D-6
UPDATE parameter D-6
UPDATE statements

in procedures 6-5
uppercase, see case inversion, case-

sensitivity
user input in procedures 6-2, 6-12
user name 3-5, 4-3, 7-23, 7-58
USETGITX parameter D-7
UVFIXFILE command 6-2
uvodbc.config file 2-1–2-3, 2-5, 3-8, 4-15

changing parameters in 2-2
creating 2-5
definition Gl-4
maintaining 2-8

.UVOUT command 3-11
UVOUT option 3-4, 3-11
uvserver process 1-4

definition Gl-4
uvserver service name 2-2

definition Gl-4
uvsrvd daemon 1-4

V

values
parameter marker 5-1

VARBIT data type A-3
VARCHAR data type 3-11, A-2
variables

see also environment variables,
parameter markers: variables

@HSTMT 6-5, 6-11, 6-12, 6-13
names 7-2
status 7-2

.VERBOSE command 3-11

Index-13

verbose mode 3-11, 3-13
VERBOSE option 3-4
VI command 6-2

W

.WIDTH command 3-11
width of display columns 3-5, 3-11,

3-14
WIDTH option 3-5
WRITE statement 1-3
writing UniVerse procedures 6-1–6-13

X

.X command 3-11
X-descriptors, @EMPTY.NULL 7-60

Index-14 UniVerse BASIC SQL Client Interface Guide

To help us provide you with the best documentation possible, please make your
comments and suggestions concerning this manual on this form and fax it to us at
508-366-3669, attention Technical Publications Manager. All comments and
suggestions become the property of Ardent Software, Inc. We greatly appreciate
your comments.

Comments

Name:__ Date:_________________

Position: ______________________________________ Dept:_________________

Organization: _________________________________ Phone:________________

Address:__

__

Name of Manual: UniVerse BASIC SQL Client Interface Guide

Part Number: 70-9028-952

	UniVerse Online Library
	UniVerse BASIC SQL Client Interface Guide
	Table of Contents
	Preface
	Organization of This Guide
	Documentation Conventions
	UniVerse Documentation
	Related Documentation
	Common APIs Documentation

	Introduction
	UniVerse Data Sources
	ODBC Data Sources
	Figure 1-1.�� UniVerse SQL Client / Server Relationships

	Additional BASIC Functions
	The CONNECT Command
	System Requirements
	Administering the RPC on UniVerse Servers
	ODBC Dynamic Link Libraries

	Getting Started
	Configuring the BASIC SQL Client Interface
	Changing the Size of the Server’s Result-Set Buffer
	Location of the Configuration File
	Format of the Configuration File
	Client Configuration for NLS-Enabled UniVerse Servers
	Creating and Modifying Data Source Definitions
	Using UniVerse Admin
	Creating the Configuration File
	Creating a New Data Source
	Deleting a Data Source
	Viewing or Modifying a Data Source

	Using the UniVerse System Administration Menus
	Maintaining the Configuration File
	Defining and Changing Data Source Specifications
	Adding or Changing a Data Source’s Extended Parameters
	Adding or Changing Parameters for All Data Sources

	Using the SQL Client Interface
	Running the Demonstration Program
	Create a Schema
	Run the Program

	Using the CONNECT�Command
	ODBC Data Sources
	Command Syntax
	Command Options
	BLOCK Option
	INVERT Option
	MVDISPLAY Option
	NULL Option
	PREFIX Option
	UVOUT Option
	VERBOSE Option
	WIDTH Option

	Logging In to the Data Source
	Logging In to a Local UniVerse Server
	Logging In to a Remote UniVerse Server
	Logging In to an ODBC Data Source
	Errors When Logging In to a Data Source

	Executing SQL Statements on the Data Source
	Using Block Mode

	Using Local Commands
	Displaying and Storing Output
	Examples
	Using Verbose Mode
	Changing the Display Width of Columns
	Exiting CONNECT
	Using UniVerse Output Mode
	Using Block Mode

	Using the SQL�Client�Interface
	Establishing a Connection to a Data Source
	Connecting to NLS-Enabled Data Sources
	Allocating the Environment
	Allocating the Connection Environment
	Connecting to a Data Source
	Connecting to a UniVerse Server with NLS Enabled

	Processing SQL Statements
	Allocating the SQL Statement Environment
	Executing SQL Statements
	Executing SQL Statements Directly
	Preparing and Executing SQL Statements
	Using Parameter Markers in SQL Statements

	Processing Output from SQL Statements
	Freeing the SQL Statement Environment

	Terminating the Connection
	Figure 4-1.�� Function Calls Used in a Simple BASIC Application
	Figure 4-2.�� Order of Function Calls

	Transaction Management
	Distributed Transactions
	Nested Transactions

	Detecting Errors
	UniVerse Error and System Messages
	SQLSTATE Values

	Table 4-1. Client Program Error Codes

	Displaying Environment Variables in RAID

	Calling and Executing Procedures
	What Can You Call as a UniVerse Procedure?
	Processing UniVerse Procedure Results
	Print Result Set
	Multicolumn Result Set
	Affected-Row Count
	Output Parameter Values

	Processing Errors from UniVerse Procedures
	Calling and Executing ODBC Procedures

	How to Write a�UniVerse�Procedure
	Using UniVerse Paragraphs, Commands, and Procs as Procedures
	Writing UniVerse BASIC Procedures
	Parameters Used by a UniVerse BASIC Procedure
	SQL Results Generated by a UniVerse BASIC Procedure
	Using @HSTMT in a UniVerse BASIC Procedure to Generate SQL Results
	Using the @TMP File in a UniVerse BASIC Procedure
	Errors Generated by a UniVerse BASIC Procedure
	Restrictions in UniVerse BASIC Procedures
	Fetching Rows and Closing @HSTMT Within a Procedure
	Hints for Debugging a Procedure

	SQL�Client�Interface Functions
	Table 7-1. Functions and Their Uses
	Variable Names
	Return Values
	Error Codes

	Data Conversion
	Table A-1.�� SQL Client Interface and BASIC Data Types�
	Table A-2. UniVerse SQL Data Types
	Table A-3.�� ODBC SQL Data Types
	Converting BASIC Data to SQL Data
	Precision and Scale
	UniVerse Data Storage Format
	BASIC to SQL Character Types
	BASIC to SQL Binary Types
	BASIC to SQL.DECIMAL and SQL.NUMERIC
	BASIC to SQL Integer Types
	BASIC to SQL.REAL, SQL.FLOAT, and SQL.DOUBLE
	BASIC to SQL.DATE
	BASIC to SQL.TIME
	BASIC to SQL.TIMESTAMP

	Converting SQL Data to BASIC Data
	Converting SQL Character Types to BASIC Data Types
	SQL Character Data Types to SQL.B.CHAR and SQL.B.DEFAULT
	SQL Character Data Types to SQL.B.NUMBER

	Converting SQL Binary Types to BASIC Data Types
	SQL Binary Data Types to SQL.B.BINARY and SQL.B.DEFAULT

	Converting SQL Numeric Types to BASIC Data Types
	SQL Numeric Types to SQL.B.CHAR
	SQL Numeric Types to SQL.B.NUMBER and SQL.B.DEFAULT

	Converting SQL Date, Time, and Timestamp Types to BASIC Types
	SQL DATE Data to SQL.B.INTDATE
	SQL DATE and TIME Data to SQL.B.CHAR and SQL.B.DEFAULT
	SQL TIME Data to SQL.B.INTTIME
	SQL TIMESTAMP Data to SQL.B.CHAR and SQL.B.DEFAULT
	SQL TIMESTAMP Data to SQL.B.INTDATE and SQL.B.INTTIME

	SQL Client Interface Demonstration Program
	Main Program
	Creating Local UniVerse Files
	Inserting Data into Local UniVerse Tables
	Creating Tables on the Data Source
	Inserting Data into the Data Source Table
	Selecting Data from the Data Source
	Checking for Errors

	Error Codes
	UniVerse Extended�Parameters
	Table D-2.�� Transaction Parameters�

	The ODBC.H File
	Glossary
	API
	application program
	association
	autocommit mode
	binding
	CLI
	connection environment
	cursor
	DDL
	DLL
	DML
	data source
	driver
	driver manager
	dynamic normalization
	embedded SQL
	environment handle
	handle
	isolation level
	manual-commit mode
	middleware
	multivalued column
	null value
	ODBC
	ODBC driver
	ODBC driver manager
	parameter marker
	precision
	prepared SQL statement
	programmatic SQL
	result set
	SAG
	SAG CLI
	scale
	single-valued column
	SQL Client Interface environment
	SQL statement environment
	UCI
	UniRPC
	unirpc
	unirpcd
	unirpcservices
	uvodbc.config
	uvserver

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

